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Abstract—In recent years, due to the growing reliance on large
amounts of data that are communicated, analyzed, and utilized
which inherently contain sensitive and personal information, se-
crecy and privacy in communication become increasingly impor-
tant. We present nonasymptotic information-theoretic analyses of
two fundamental secrecy problems under channel uncertainties:
the information hiding problem and the compound wiretap
channel. The former admits a game-theoretic formulation, where
one party (an information hider and a decoder) seeks to embed
secret messages into a host signal for later reconstruction,
while the opposing party (an attacker) attempts to remove
or degrade the embedded information. The latter generalizes
Wyner’s wiretap channel by allowing multiple potential channel
states. The information hiding problem concerns active attacks
during data transmission, while the compound wiretap channel
addresses passive eavesdropping and information leakage. The
two problems, both of which consider channels with uncertainties,
can be studied under a unified framework by utilizing a covering
argument and the Poisson matching lemma. We derive novel one-
shot achievability results for both problems that are applicable to
any source distribution and any class of channels (not necessarily
memoryless or ergodic), and that apply to both discrete and
continuous cases. We also show that existing asymptotic results
can be recovered by applying our results to discrete memoryless
channels.

Index Terms—One-shot achievability, finite blocklength analy-
sis, information hiding, watermarking, wiretap channels.

I. INTRODUCTION

In data science and wireless communication, secrecy and
privacy are becoming increasingly important due to the grow-
ing dependence on large amounts of data being communicated,
analyzed, and utilized, which inherently contain sensitive and
personal information and, therefore, should be well protected
from leakage. Over the past few decades, the fundamental
information-theoretic limits of various secrecy and privacy
problems have been extensively studied. During information
transmission, there are two types of concerns regarding in-
formation leakage: active attacks and passive wiretapping. In
this paper, we consider two fundamental problems in infor-
mation theory that address these two concerns, respectively:
the information hiding problem [1] and the compound wiretap
channel [2].
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For the information hiding problem [1], it can be formulated
as a communication system from a game-theoretic perspective,
where an encoder-decoder team seeks to transmit a confi-
dential message embedded in a host data source, while the
opposing side is an attacker, modeled as a noisy channel,
attempts to destroy or degrade the message. The information-
theoretic limits of different variations of information hid-
ing have been extensively investigated over the past two
decades [1], [3]–[5], due to its wide range of applications,
including watermarking, fingerprinting, steganography, and
copyright protection. Existing analyses of information hiding
problems borrow techniques from various fields, including
wireless communication, signal processing, cryptography, and
game theory. For the compound wiretap channel, [2] modeled
the problem as a generalization of Wyner’s conventional wire-
tap channel [6], where the communication channel can take
multiple potential states. The objective is to ensure reliable
transmission and minimize information leakage regardless of
which state occurs. This model is more general and better
suited to practical wireless communication scenarios where the
transmitter may not have knowledge of the channel conditions
or where channel characteristics change rapidly, yet commu-
nication performance and security must still be guaranteed.

In all existing studies on these two problems, the
information-theoretic limits have been analyzed in the asymp-
totic regime, assuming that the signal has a blocklength
approaching infinity. However, this assumption does not hold
in practice, as packets have bounded lengths, which can be
quite short in certain applications [7]. Over the past decade,
finite-blocklength information theory has been extensively
studied [8]–[11], leading to the derivation of nonasymptotic
limits, where the law of large numbers does not apply and
conventional typicality-based tools are inapplicable. More
generally, we are interested in one-shot achievability results,
where the channel or source is arbitrary and used only once.
Various one-shot coding techniques have been proposed [12]–
[14], yielding one-shot bounds that recover existing (first-
order and second-order) asymptotic results when applied to
memoryless sources or channels. See Section II-C for a review.

In this paper, which extends the conference version [15],1

we study the one-shot achievability results of the information

1The conference version [15] studies the information hiding setting only. In
comparison, this journal version not only provides more detailed discussions
and generalizations of the information hiding problem, but also extends the
framework to the compound wiretap channel and derives novel one-shot
achievability results, as well as the recovery of the asymptotic achievable
rates, which were not covered in [15].



hiding problem and the compound wiretap channel. Compared
to the asymptotic information hiding [1], we remove the
assumption that the decoder knows the attacker’s strategy,
considering instead that the only available knowledge is that
the attack channel belongs to a set (which may have infi-
nite cardinality). For both problems, our goal is to provide
distributionally robust coding strategies (see [16]) due to the
channel uncertainty, and we hence study them under a unified
framework. We briefly summarize our contributions as follows.

• We derive novel one-shot achievability results for the in-
formation hiding problem [1] and the compound wiretap
channel [2], under the same framework.

• For both problems, most of the existing asymptotic
analyses assume the decoder knows the channels.2 We
derive one-shot results without such an assumption, by
utilizing the Poisson matching lemma [14] and a covering
argument [17].

• We show the one-shot results recover existing asymptotic
bounds when applied to memoryless channels (possibly
subject to distortion constraints), hence providing alter-
native proofs that can be simpler.

• Additionally, unlike [1], [2], our results apply to both
continuous and discrete cases.

The paper is organized as follows. We begin with a literature
review on information hiding, watermarking, compound wire-
tap channels, and one-shot information theory in Section II.
Next, we present the one-shot information hiding problem
in Section IV and recover existing asymptotic results in
Section V. Within the same framework, we study the one-
shot compound wiretap channel in Section VI. Finally, in
Section VII, we discuss how our analysis on information
hiding can benefit the design of better AI-based watermarking
tools, which are becoming increasingly important in the era
of generative models.

II. RELATED LITERATURE

A. Information Hiding

The information hiding problem has been studied since [1],
[3]–[5], due to its wide range of applications, including
watermarking, fingerprinting, audio/image/video processing,
copyright protection, and steganography. The goal is to hide a
message into some host signal (by introducing a certain level
of distortion), so that the message can be correctly recon-
structed after suffering attacks (which introduce another level
of distortion). This problem was modeled as a communication
problem, and asymptotic information-theoretic capacity was
derived in [1]. In general, information hiding is closely related
to the Gelfand–Pinsker problem [18], [19], and various exten-
sions have been studied, e.g., the case where side information
is available to the encoder, decoder, and adversary [20], and the
case where the decoder has rate-limited side information [21].
See [22] for its duality with the Wyner–Ziv problem, and [23]

2This assumption can be reasonable when the bolcklength is large, but
should be dropped in the one-shot scenarios. See Section IV-B for discussions.

for a comprehensive survey. We discuss its applications and
related settings with different objectives as follows.

1) Watermarking, Fingerprinting, and Steganography:
The setting in [1] can be viewed as public watermarking [4],
where the host signal is available only at the encoder. In
contrast, when it is also available at the decoder, private wa-
termarking has been studied in [3], [24]. In the Gaussian case,
public and private watermarking have the same capacity [5],
but this is not true in general. Watermarking problems consider
messages containing personal identification information to be
protected from attacks, but secrecy is not always required.
In comparison, digital fingerprinting [1], [25] embeds finger-
prints into the host data to uniquely identify users for tracing
illegal data usage, which can be more challenging due to
potential collusion. A provably good data embedding strategy
was introduced by [26]. Random coding error exponents have
been investigated in these problems [20], [27], [28]. In [1, Sec.
VII.C] it was indicated that information hiding was applicable
to steganography, and this was later studied by [29] for the
capacity of perfectly secure steganographic systems. See [30]
for trellis codes and [31] for polar codes, which are used in
steganographic code designs.

2) Host, Stegotext, and Reversibility: In the conventional
information hiding [1], the message is embedded into host data
by producing an encoded signal (“stegotext”), with the goal of
recovering the message only. Other objectives have been con-
sidered later, such as conveying the host [32] or reconstructing
the stegotext [33], [34]. Reversible information embedding has
also been investigated [35]–[37], where the host signal needs
to be decoded. However, this can incur a high cost when
the host has high entropy [35], making perfect reversibility
even impossible for continuous host signals [37]. Nevertheless,
in practice, the goal is often to enable retransmission of the
stegotext, and codes for stegotext recovery have been stud-
ied [33], [34]. For this setting, single-letter capacity-distortion
tradeoffs are known only for logarithmic distortion [32] and
quadratic distortion in the Gaussian case [38]. We discuss these
generalizations on our setting in Section IV-C.

B. Compound Wiretap Channels

Compound wiretap channels [2] generalize the conventional
wiretap channel model [6] by allowing both the legitimate
channel and the eavesdropper’s channel to have multiple pos-
sible states. The objective is to guarantee reliable and secure
signal transmission regardless of which state occurs. This is a
practical model for channel uncertainty, where the transmitter
may have no knowledge of the channel (due to the dynamic
nature of the wireless medium or unavoidable implementa-
tion/estimation inaccuracies), but zero performance outage is
still required (e.g., for ultra-reliable communications [7]). [2]
proposed achievable and converse results, with the converse
bounds shown to be tight in certain cases by [39]. They also
studied the achievable secrecy degrees of freedom (s.d.o.f.)
region for a multi-input multi-output (MIMO) model, which
was later extended to the case of two confidential messages
in [40]. The s.d.o.f. of compound wiretap parallel channels



were also studied in [41]. See [42], [43] for discussions on
Gaussian MIMO compound wiretap channels.

In [2], [39], the results focused on discrete memoryless
channels with a countably finite uncertainty set (i.e., the set
from which the exact channel realization is drawn). This was
later extended to arbitrary uncertainty sets, including contin-
uous alphabets, by [44], which is also one of the contributions
of our paper. Moreover, [45] showed that the secrecy capacity
is a continuous function of the uncertainty set.

C. One-shot Information Theory

For all the literature discussed in this section so far, the
information-theoretic bounds are investigated asymptotically in
the large blocklength limit, based on the law of large numbers.
However, this assumption is impractical, as packets have
bounded lengths, which can be very short in low-latency com-
munications [7]. Over the past decade, finite blocklength [8]–
[10] and one-shot [11]–[14], [46], [47] information theory
have been widely studied, leading to nonasymptotic results. In
the one-shot setting, we assume the channel or source is used
only once (i.e., it need not be memoryless or ergodic), and the
blocklength is 1. These results are expected to recover existing
(first-order and second-order) asymptotic bounds when applied
to memoryless channels or sources (e.g., asymptotic channel
coding capacity by Shannon [48] can be implied by the one-
shot bounds of Feinstein [49], Shannon [50], or [10], [11]).

In this paper, we consider the one-shot scenario and derive
achievability results using the Poisson matching lemma [14],
which has been shown to improve upon previously known one-
shot bounds in various settings with simpler analyses [14],
with recent applications including hypothesis testing [51], se-
cret key generation [52], unequal message protection [53] and
oblivious relaying [54]. It is based on the Poisson functional
representation [55], which has also recently been applied to
various fields in combination with other techniques, such as
neural estimation [56] and differential privacy [57]. A refined
version of the Poisson matching lemma has been used to
analyze general (multi-hop) noisy networks in [58].

Notations

We assume logarithm and entropy are to the base 2. For
a statement S, we use 1{S} to denote its indicator, i.e.,
1{S} = 1 if S holds, and otherwise 1{S} = 0. We use
δa to denote the degenerate distribution P{X = a} = 1.
For two random variables X,Y , the information density is
defined as ιX;Y (x; y) = log((dPX|Y (·|y)/dPX)(x)), where
dPX|Y (·|y)/dPX denotes the Radon-Nikodym derivative. We
sometimes omit the subscript and write ι(x; y) if the ran-
dom variables are clear from the context. The total variation
(TV) distance between two distributions P,Q over X is
∥P − Q∥TV := supA⊆X measurable |P (A) − Q(A)|. The set of
positive integers is denoted by N+. We write [i] := {1, . . . , i}
for i ∈ N+. We write P ≪ Q to denote that P is absolutely
continuous with respect to Q.

III. POISSON MATCHING LEMMA

In this section, we introduce our main technique, called the
Poisson matching lemma [14]. The techniques in [1], [4] (e.g.,
the tools based on the typical sets, which have resemblances
to the Gelfand-Pinsker coding [18], [19]) are not suitable for
the one-shot setting. The Poisson matching lemma has been
shown to be useful in proving one-shot achievability results of
network information theory [14], [58], see Section IV-B for a
detailed discussion.

The Poisson matching lemma is rooted in the Poisson
functional representation [55] that is reviewed as follows. Fix a
probability distribution P̄ over U . Let (Ti)i=1,2,... be a Poisson
process with rate 1, i.e., T1, T2 − T1, T3 − T2

iid∼ Exp(1). Let
(Ūi)i be an independent i.i.d. sequence with distribution P̄ .
This “marked” Poisson process (Ūi, Ti)i supports a “query
operation” given by the Poisson functional representation,
where one can input a distribution P over U , and obtain one
sample ŨP with distribution P .

The Poisson functional representation is given by

ŨP := ŪK , where K := argmin
i

Ti ·
(dP
dP̄

(Ūi)
)−1

.

The way this Poisson process is used in communication
settings (e.g., in [14], [58]) is that the encoder would query
the process using the prior distribution of the signal to obtain
the signal to be sent, and the decoder would query using the
posterior distribution of the signal given the noisy observation
to obtain the message. There is no error in the communication
if the two queries return the same sample. The probability of
error can be bounded by the Poisson matching lemma [14],
shown as follows.

Lemma 1 (Poisson matching lemma [14]). Consider two
distributions P,Q ≪ P̄ . Almost surely, we have

P
(
ŨQ ̸= ŨP

∣∣ ŨP

)
≤ 1−

(
1 +

dP

dQ
(ŨP )

)−1

.

IV. ONE-SHOT INFORMATION HIDING

In this section, we formulate the one-shot information hiding
problem, discuss its connections to related works, present our
novel one-shot achievability results, and also explore some
generalizations.

Fig. 1. The information hiding problem.

The one-shot information hiding problem is described in
Figure 1. A message M is uniformly chosen from the set
[1 : L], where L is the message size. The goal is to hide the
message M into a host data source S ∈ S to produce X . The



stegotext X is sent through the attack channel AY |X , which is
chosen by an attacker that attempts to remove or degrade the
embedded message during the signal transmission. We allow
the common randomness K ∈ K to be available at both the
encoder and the decoder, but not the attacker, and the decoder
attempts to reconstruct the original message M after observing
Y,K. The common randomness K reveals information about
S to the decoder, which may be correlated with K according
to the joint distribution PS,K .

Given the random variables, the information hiding problem
can be viewed as a game between two parties: the first party
consists of the encoder (information hider) and the decoder,
who are cooperatively transmitting the message M ; the second
party is an attacker, who is trying to remove or degrade the
hidden message M in S so that the decoder cannot correctly
reconstruct it. See [1], [3]–[5] for more discussions on the
game-theoretic formulation. Their roles and assumptions are
elaborated as follows.

• Encoder: The encoder observes a message M that is
uniformly chosen from the set [1 : L], and the goal of
encoding is to hide M into a host data source S ∈ S
by introducing some tolerable level of distortions. Given
S,K,M , the encoder outputs X = f(S,K,M), where
f : S × K × [1 : L] → X . It is expected that X is
close to S, in the sense that d1(S,X) is small, where
d1 : S × X → [0,∞) is a distortion measure. We
want d1(S,X) ≤ D1 with high probability. This will
be elaborated later. The encoded steogtext X is then
transmitted through the a channel AY |X ∈ A.

• Attacker: The attacker is formulated as a noisy chan-
nel AY |X , called the attack channel. With input X , it
performs data processing attacks by introducing another
level of distortion and produces Y , a corrupted version
of X . Unlike the asymptotic study [1], we do not assume
the attacker’s strategy is known by the encoder and the
decoder (See IV-B for discussions). The attacker is free
to choose AY |X from a class of channels A (e.g., the
class of channels satisfying some distortion constraint
between X and Y , or the class of memoryless channels
where X and Y are sequences), whose cardinality can be
infinite. Both deterministic and randomized attacks can be
performed. We assume the attacker has knowledge of the
distributions (but not the values) of S,M,K, and also
knows the code that the encoder-decoder team uses.

• Decoder: Upon observing the attacker’s output Y and
the side information K, the decoder wishes to recover
the message M . It outputs M̂ = ϕ(K,Y ), where ϕ :
K × Y → [1 : L]. The decoder is uninformed of the
attacker’s strategy. We require the following worst case
failure probability to be small:

Pe := sup
AY |X∈A

P
(
d1(S,X) > D1 OR M ̸= M̂

)
, (1)

where (S,K,M) ∼ PS,K × Unif[1 : L], X = f(S,K,

M), Y |X ∼ AY |X and M̂ = ϕ(K,Y ) in the probability.3

A. One-shot Achievability Results
We then provide one-shot achievability results of the in-

formation hiding problem. Since we let the encoder-decoder
team account for all possible attack channels in a set A, the
achievability results have to suffer a penalty depending on the
“size” of A. Though the cardinality of A could be infinite, we
can often find a finite subset Ã such that every attack channel
A ∈ A is close enough to some Ã ∈ Ã. We capture this notion
of size by the ϵ-covering number defined below (see similar
covering arguments in [1], [17]).

Definition 1. Given a set of channels A from X to Y , its
ϵ-covering number is defined as

Nϵ(A) := min
{
|Ã| : Ã ⊆ A, sup

A∈A
min
Ã∈Ã

sup
x∈X∥∥∥AY |X(·|x)− ÃY |X(·|x)

∥∥∥
TV

≤ ϵ
}
,

where ∥AY |X(·|x)− ÃY |X(·|x)∥TV ∈ [0, 1] denotes the total
variation distance between AY |X(·|x) (the distribution of Y if
X = x, and Y follows AY |X ) and ÃY |X(·|x).

We now present the main result, which is a one-shot
achievability result with a bound on the error probability in
terms of Nϵ(A) and the information density terms.

Theorem 2. Fix any PU,X|S,K and channel ÂY |X . For any
ϵ ≥ 0, there exists an information hiding scheme satisfying

Pe ≤ Nϵ(A) sup
AY |X∈A

EY |X∼AY |X

[
1− 1{d1(S,X) ≤ D1}

·
(
1 + L2−ι̂(U ;Y |K)+ι(U ;S|K)

)−1
]
+ ϵ,

where we assume (S,K,U,X, Y ) ∼ PS,KPU,X|S,KAY |X
in the expectation, and ι̂(U ;Y |K) is the information den-
sity computed by the joint distribution PS,KPU,X|S,KÂY |X
(instead of AY |X ), assuming that ι(U ;S|K), ι̂(U ;Y |K) are
almost surely finite for every AY |X ∈ A.

Proof. The idea is that we design the decoder assuming
that the attack channel is fixed to AY |X , and hope that
this decoder works for every attack channel AY |X ∈ A.
Let C := ((Ūi, M̄i), Ti)i where (Ti)i is a Poisson process,
Ūi

iid∼ PU , and M̄i
iid∼ PM (where PM = Unif[1 : L]). This

will act as a random codebook shared between the encoder
and the decoder (and this codebook will be fixed later).

The encoder observes the message M ∼ PM , the host signal
S and side information K, by the Poisson functional represen-
tation [14], [55] on the distribution PU |S,K(·|S,K)×δM over

3Note that [1] imposes a constraint on the expected distortion E[d1(S,X)],
which is reasonable in the context of [1] because the memoryless assumption
and the law of large numbers ensure that the actual distortion is close to the
expected distortion. Since we are considering a one-shot setting where we
only assume the attack channel is chosen from a set A, if constraint need to
be specified, it might be more reasonable to consider d1(S,X) > D1 as a
failure event and bound the probability of failure, i.e., the excess distortion
probability instead, compared to expected distortion.



U × [1 : L] it produces U = ŨPU|S,K(·|S,K)×δM ,4 and sends
the generated X|(S,K,U) ∼ PX|S,K,U . The decoder observes
Y,K and outputs M̂ = M̃P̂U|Y,K(·|Y,K)×PM

by the Poisson

functional representation, where P̂U |Y,K is the conditional
probability distribution computed by the joint distribution
PS,KPU,X|S,KÂY |X . When the attack channel is AY |X ∈ A,
the error probability is bounded as follows:

Pe(A) := 1−PY |X∼AY |X

(
d1(S,X) ≤ D1 AND M = M̂

)
= E

[
1− 1{d1(S,X) ≤ D1} · 1{M = M̂}

]
= E

[
1− 1{d1(S,X) ≤ D1} ·P

(
M = M̂ |M,S,U, Y,K

)]
≤ E

[
1− 1{d1(S,X) ≤ D1}

·P
(
(U,M) = (Ũ , M̃)P̂U|Y,K(·|Y,K)×PM

|M,S,U, Y,K
)]

(a)

≤ E

[
1− 1{d1(S,X) ≤ D1}

·
(
1 +

dPU |S,K(·|S,K)× δM

dP̂U |Y,K(·|Y,K)× PM

(U,M)
)−1

]
= E

[
1− 1{d1(S,X)≤D1}

(
1 + L2−ι̂(U ;Y |K)+ι(U ;S|K)

)−1
]

≤ sup
AY |X∈A

EY |X∼AY |X

[
1− 1{d1(S,X) ≤ D1}

·
(
1 + L2−ι̂(U ;Y |K)+ι(U ;S|K)

)−1
]

=: Pe,

where (a) is by the Poisson matching lemma.5 If we allow the
encoder and the decoder to share unlimited additional common
randomness, we can assume the codebook C = ((Ūi, M̄i), Ti)i
is actually shared, and conclude that Pe = supA∈A Pe(A) ≤
Pe. Nevertheless, the only actual common randomness be-
tween the encoder and the decoder is K, which we cannot
control. Therefore, we have to fix the codebook.

Let Pe(A, c) be the probability of error when the attack
channel is A and the codebook is C = c. We have Pe(A) =
EC [Pe(A, C)]. Let Ã ⊆ A attain the minimum in Nϵ(A).

Consider any A ∈ A, and let Ã ∈ Ã satisfy

sup
x∈X

∥∥∥AY |X(·|x)− ÃY |X(·|x)
∥∥∥
TV

≤ ϵ.

The total variation distance between the joint distribution of
M,S,K,U,X, Y under the attack channel A conditional on
C = c and the joint distribution under the attack channel Ã
conditional on C = c is also bounded by ϵ. Hence |Pe(A, c)−
Pe(Ã, c)| ≤ ϵ and

Pe(A, c) ≤ Pe(Ã, c) + ϵ

4The Poisson functional representation produces a pair (Ũ , M̃), and U is
set to be the first component of the pair.

5The Poisson matching lemma is applied on the conditional distributions
given M,S,U, Y,K. Also see the conditional Poisson matching lemma [14].

≤
∑
Ã∈Ã

Pe(Ã, c) + ϵ.

Therefore,

EC

[
sup
A∈A

Pe(A, C)
]

≤ EC

[ ∑
Ã∈Ã

Pe(Ã, C) + ϵ
]

=
∑
Ã∈Ã

Pe(Ã) + ϵ

≤ |Ã| · Pe + ϵ.

The proof is completed by the existence of a codebook c such
that supA∈A Pe(A, c) ≤ |Ã| · Pe + ϵ.

Remark 1. Note that when K = ∅, d1(s, x) = 0, and A =
{AY |X} is a singleton set, taking ÂY |X = AY |X , Theorem 2
recovers the one-shot Gelfand-Pinsker coding result in [14],
which is the only known one-shot bound that attains the best
known second order result in [59]. The asymptotic Gelfand-
Pinsker capacity [18], [19] can be readily recovered.

Remark 2. The one-shot achievability results can be converted
to a finite blocklength result where n is a fixed number using
the Berry-Esseen theorem [60]–[62]. For example, see [14,
Section IV] for converting the one-shot result of the Gelfand-
Pinsker problem to a second-order result by the Berry-Esseen
theorem [60]–[62], which can also be recovered by Theorem 2.

B. Discussions

In [1], it is assumed that the attack channel must be
memoryless, and the decoder can obtain full knowledge of the
attack channel. This assumption can be reasonably justified by
the large blocklength, as one can use training symbols at the
beginning of transmission, with their size becoming negligible
compared to the blocklength. However, this assumption be-
comes questionable in the one-shot scenario, where the attack
channel can be arbitrary and is only used once. We drop this
assumption and allow the decoder to be totally uninformed
of the attack channel. In [4] this assumption is also dropped,
and an asymptotic hiding capacity expressed as the limit of a
sequence of single-letter expressions has been derived using
constant composition codes. The key difference between [4]
and our setting is that the side information in [4] is a shared
key of unlimited size independent of M,S that can be chosen
as a part of the coding scheme, whereas in our paper and [1]
the K is a given side information that may be correlated with
S (where the dependence is from the joint distribution PS,K),
and cannot be changed. In some watermarking problems [24],
[63] certain components can be further constrained, e.g., there
may exist a mapping from the message M to a codeword
V (M) which is independent of S, and then composite data
are obtained by a mapping from S, K and V (M).

The information hiding setting can be regarded as a variant
of Gelfand-Pinsker coding for channels with side information
at the encoder [18], [19], where the channel is fixed and not



chosen by the attacker, and there is no shared side information
between the encoder and the decoder. Since the encoder and
the decoder have to account for all possible attack channels,
this can be regarded as a combination of Gelfand-Pinsker
coding and compound channel [17], [64], [65]. The analyses
in [1], [4] utilize techniques such as random binning, joint
typicality decoding and constant composition codes, which are
also commonly utilized in the asymptotic analyses of Gelfand-
Pinsker coding [18], [59]. These techniques may not be
suitable for our one-shot setting. Strong typicality and constant
composition codes are inapplicable when the blocklength is 1.
While random binning can be applied to one-shot Gelfand-
Pinsker coding [12], [13], [47], it produces weaker results
compared to the Poisson matching lemma [14]. To obtain tight
one-shot bounds for information hiding, we utilize the Poisson
matching lemma instead, which has been shown to perform
well in various one-shot settings [14], [58].

C. Generalizations

We discuss some generalizations of our information hiding
setting.

As shown in Figure 1, we have a host signal S available
to the encoder and a side information K available to both the
encoder and the decoder. This can be generalized by letting
the encoder have a side information source SEnc, the decoder
have another side information source SDec, and they possibly
share a codebook C. In this case, our setting (also [1] and
public watermarking [4]) correspond to SEnc = (S,K) and
SDec = K, while private watermarking [3] corresponds to
SEnc = SDec = S. This setting has been investigated in [20].
Moreover, in [33], [34], the decoder not only recovers the
message M , but also lossily reconstructs the stegotext X ,
within another level of distortion d′1(X, X̂). See Figure 2 for
an illustration.

Fig. 2. The generalized information hiding problem.

By employing these generalizations, the information hiding
setting can be extended as follows: Upon observing side
information SEnc and the message M , the encoding function
f : SEnc× [1 : L] → X outputs X = f(SEnc,M); the decoder
observes Y , the output of the attacker, together with another
side information SDec, and computes (M̂, X̂) = ϕ(SDec, Y ),
the distorted versions of M and X , where ϕ : SDec × Y →
[1 : L]×X . To highlight the potential advantage of randomized
coding schemes, we allow both the encoding function f and

decoding function g to depend on another random variable C,
which is shared between the encoder and decoder but unknown
to the attacker. This random variable C can serve as a source
of common randomness (or equivalently, as a codebook shared
between the encoder and decoder).

The distortion of the stegotext X is measured by d′1(X, X̂),
where d′1 : X × X → [0,∞) is another distortion measure.
The decoder is uninformed of the attack channel, and in this
generalized case we also intend to bound the worst case failure
probability

Pe := sup
AY |X∈A

P
(
d1(S,X) > D1 OR

d′1(X, X̂) > D′
1 OR M ̸= M̂

)
, (2)

where we assume (SEnc, SDec,M) ∼ PSEnc,SDec×Unif[1 : L],
X = f(SEnc,M), Y |X ∼ AY |X and (M̂, X̂) = ϕ(SDec, Y )
in the probability.

Based on this setting, we can derive the following theorem,
which is a generalized version of Theorem 2. The proof is
similar to that of Theorem 2 and is therefore omitted.

Theorem 3. Fix any PU,X|SEnc,SDec
and channel ÂY |X . For

any ϵ ≥ 0, there exists a scheme for the information hiding
problem satisfying

Pe ≤ Nϵ(A) · sup
A∈A

EY |X∼A

[
1− 1{d1(SEnc, X) ≤ D1}

· 1{d′1(X, X̂) ≤ D′
1} ·

(
1 + L · 2−ι̂(U ;Y,SDec)+ι(U ;SEnc)

)−1
]

+ ϵ,

where we assume (SEnc, SDec, U,X, Y ) ∼
PSEnc,SDec

PU,X|SEnc
AY |X in the expectation, and

ι̂(U ;Y, SDec) is the information density computed by
the joint distribution PS,KPU,X|S,KÂY |X (instead of AY |X ),
assuming that ι(U ;SEnc), ι̂(U ;Y, SDec) are almost surely
finite for every AY |X ∈ A.

V. RECOVERY OF THE ASYMPTOTIC INFORMATION
HIDING CAPACITY

In this section, we show that our Theorem 2 recovers the
asymptotic information hiding capacity [1] when applied to
the discrete and memoryless setting, with the attack channels
subject to a distortion constraint. This gives an alternative
proof to [1]. Note that, from a similar procedure, we can
recover the achievable bound for information hiding with
stegotext reconstruction [34, Theorem 1] (which, in turn, is an
extension of [33] and [37]) by using Theorem 3. We choose to
present the details of Theorem 2 recovering the information
hiding capacity [1] for simplicity, as it already captures the
core idea.

We first provide a simple bound on the ϵ-covering number
in the case that X and Y are discrete and finite.



Proposition 4. If X and Y are finite, then

Nϵ(A) ≤
( 1

2ϵ
+

|Y|+ 1

2

)|X |·|Y|
.

Proof. Write

d(A, Ã) := sup
x∈X

∥AY |X(·|x)− ÃY |X(·|x)∥TV.

We use the standard method to bound the covering number,
where we start with Ã = ∅, and add A ∈ A not currently
covered by Ã (i.e., minÃ∈Ã d(A, Ã) > ϵ) to Ã one by one
until all of A is covered. Note that every two different Ã, Ã′ ∈
Ã produced this way must satisfy d(Ã, Ã′) > ϵ, and hence the
(ϵ/2)-balls {A : d(A, Ã) ≤ ϵ/2} must be disjoint for Ã ∈ Ã.

We now treat AY |X as a transition probability matrix A ∈
R|Y|×|X|. We have

d(A, Ã) =
1

2
∥A− Ã∥1

=
1

2
max

x

∑
y

|Ay,x − Ãy,x|.

The volume of the ball {A ∈ R|Y|×|X| : d(A, Ã) ≤
ϵ/2} (i.e., its Lebesgue measure in the space R|Y|·|X |) is
((2ϵ)|Y|/(|Y|!))|X |, and all these balls are subsets of {A ∈
R|Y|×|X| : minx,y Ay,x ≥ −ϵ, maxx

∑
y Ay,x ≤ 1+ϵ}, which

has a volume ((1 + (|Y|+ 1)ϵ)|Y|/(|Y|!))|X |. Hence, the size
of Ã is upper-bounded by((

1 + (|Y|+ 1)ϵ
)|Y|

/(|Y|!)
)|X |

(
(2ϵ)|Y|/(|Y|!)

)|X | =
( 1

2ϵ
+

|Y|+ 1

2

)|X |·|Y|
.

We now show that Theorem 2 recovers the asymptotic result
in [1] when S,K,X, Y are finite and discrete, and the attack
channel must be memoryless and is subject to a distortion
constraint.

Consider sequences Sn = (S1, . . . , Sn), Kn, Xn, Y n

where (Si,Ki)
iid∼ PS,K . Consider a channel input distribution

PX . The class of attack channels An = An(PX) (which
depends on PX ) is taken to be

An(PX) :=
{
An

Y |X : AY |X ∈ A(PX)
}
,

and we let

A(PX) :=
{
AY |X : E(X,Y )∼PXAY |X [d2(X,Y )] ≤ D2

}
,

where d2 : X × Y → [0,∞) is a distortion measure,
and D2 is the allowed distortion level. In other words, the
attacker can only use memoryless channels An

Y |X that satisfy
the expected distortion constraint E[d2(X,Y )] ≤ D2. The
asymptotic hiding capacity given in [1] is

C = max
PU,X|S,K

min
AY |X :E[d2(X,Y )]≤D2

(
I(U ;Y |K)− I(U ;S|K)

)
.

where the maximum is over PU,X|S,K with E[d1(S,X)] ≤ D1.
We now show the achievability of the above asymptotic

rate as a direct corollary of Theorem 2. Fix PU,X|S,K which

achieves the above maximum subject to E[d1(S,X)] ≤ D′
1

where D̃1 < D1. Take ÂY |X to be the minimizer of the rate-
distortion function minAY |X :E[d2(X,Y )]≤D2

I(U ;Y |K), and
assume (S,K,U,X, Y ) ∼ PS,KPU,X|S,KÂY |X . Write the
information density and mutual information obtained from
this distribution as ι̂U ;Y |K and Î(U ;Y |K), respectively. Fix a
coding rate R < Î(U ;Y |K) − I(U ;S|K). We want to show
that this rate is achievable.

Consider any attack channel AY |X with E[d2(X,Y )] ≤ D2.
Let Aλ

Y |X := (1 − λ)ÂY |X + λAY |X for 0 ≤ λ ≤ 1. Write
Iλ(U ;Y |K) for the mutual information computed assuming
Y |X ∼ Aλ

Y |X . It is straightforward to check that

d

dλ
Iλ(U ;Y |K)

∣∣∣
λ=0

= EY |X∼AY |X [ι̂(U ;Y |K)]− Î(U ;Y |K).

By the optimality of Â, the above derivative is nonnegative,
and hence EY |X∼AY |X [ι̂(U ;Y |K)] ≥ Î(U ;Y |K). Therefore,
when we have i.i.d. sequences (Sn,Kn, Un, Xn, Y n) ∼
Pn
S,KPn

U,X|S,KAn
Y |X and L = ⌊2nR⌋, by the law of large

numbers,

L2−ι̂(Un;Y n|Kn)+ι(Un;Sn|Kn)

≤ 2nR−
∑n

i=1(ι̂(Ui;Yi|Ki)−ι(Ui;Si|Ki))

→ 0

exponentially as n → ∞ since E[ι̂(Ui;Yi|Ki) −
ι(Ui;Si|Ki))] ≥ Î(U ;Y |K)− I(U ;S|K) > R. We also have
d1(S

n, Xn) =
∑n

i=1 d1(Si, Xi) > nD1 with probability ap-
proaching 0 exponentially since D̃1 < D1. These convergences
are uniform over all such attack channels AY |X since the
random variables are discrete and finite.

Therefore, to bound Pe using Theorem 2, it is left to bound
the ϵ-covering number Nϵ(An(PX)). Note that∥∥∥An

Y |X(·|xn)− Ãn
Y |X(·|xn)

∥∥∥
TV

≤
n∑

i=1

∥∥∥AY |X(·|xi)− ÃY |X(·|xi)
∥∥∥
TV

,

and hence we can construct a ϵ-cover of An(PX) using an
(ϵ/n)-cover of A(PX). Therefore,

Nϵ(An(PX)) ≤ Nϵ/n(A(PX))

= O((n/ϵ)|X |·|Y|)

by Proposition 4, which grows much slower than the expo-
nential decrease of the expectation in Theorem 2. Therefore,
taking ϵ = 1/n, we have Pe → 0 as n → ∞. Taking D̃1 → D1

completes the proof.

VI. ONE-SHOT COMPOUND WIRETAP CHANNELS

In this section, we consider the compound wiretap chan-
nel [2] in the one-shot setting. We utilize the Poisson matching
lemma [14], under a framework similar to the one-shot infor-
mation hiding discussed in Section IV. We provide novel one-
shot achievablity results for the compound wiretap channel [2].
To the best of our knowledge, the one-shot results of this



problem has not been discussed in literature, though finite-
blocklength bounds on the single wiretap channel (without
uncertainties/multiple-states of the channel) can be found
in [66]–[68].

Unlike the asymptotic analysis of the discrete memoryless
compound wiretap channel [2], our one-shot results also
apply to continuous scenarios. Note that [44] also studied the
continuous case of compound wiretap channels, but the focus
in [44] was mainly on the compound Gaussian MIMO wiretap
channels, and the analysis was not one-shot.

A. Problem Formulation

The one-shot compound wiretap channel setting is described
as follows. A message M is uniformly chosen from Unif[L].
Upon observing M ∼ Unif[L], the encoder produces X =
f(M), where f : [L] → X is a randomized encoding function.
Then X is sent through a channel PY,Z|X that is unknown to
the encoder and the decoder but known to the eavesdropper.
A legitimate decoder observes Y and recovers M̂ = g(Y ),
where g : Y → [L] is a decoding function. The eavesdropper
observes Z ∈ Z . Justified by [2] and [69, Lemma 1], we can
assume the transition probability distribution is PY |XPZ|X by
decomposing PY,Z|X without loss of optimality.

We do not fix PY |X , but rather allow PY |X to be any
element in D, a set of channels to the legitimate decoder.
Similarly, we allow PZ|X to be any element in E , a set of chan-
nels to the eavesdropper. In this paper, we assume the encoder
and decoder have no knowledge of PY |X and PZ|X , making
them universal in the sense that their performance guarantees
do not depend on specific channel realizations. However, for
secrecy applications, we make the conservative assumption
that the eavesdropper knows both channel distributions PY |X
and PZ|X .

Unlike [2] but similar to our discussions on the information
hiding problem, the set of channels to the legitimate decoder
D and the set of channels to the eavesdropper E can be infinite,
which captures the infinite variability of real-world signals
and their propagation characteristics in practical applications.
While the cardinalities of D, E can be infinite, we can often
find finite subsets D̃, Ẽ such that every channel to the decoder
(or eavesdropper) in D̃ (or Ẽ) would be close enough to
some P̃Y |X ∈ D̃ (or P̃Z|X ∈ Ẽ). This idea has appeared in
Section IV and also in [17], [44].

The objective is to bound the worst case error probability

Pe := sup
PY |X∈D

P
(
M ̸= M̂

)
, (3)

while also ensure the secrecy is guaranteed, which is measured
by the total variation distance

γ := sup
PZ|X∈E

∥PM,Z − PM × PZ∥TV (4)

being small.

B. One-Shot Achievability

We then provide one-shot achievability results of the com-
pound wiretap channel. Note the result can be viewed as a

combination of the covering argument appeared in Section IV
and the one-shot soft covering lemma in [14, Proposition
3]. Other existing one-shot wiretap channel results [66], [67]
might also be utilized in a similar framework as well.

Theorem 5. Fix any PU,X and any wiretap channel P̂Y,Z|X =

P̂Y |XPZ|X . For any ν ≥ 0, any ϵ1, ϵ2 ≥ 0 and A,B ∈ N, there
exists a code for the compound wiretap channel setting, with
message M ∼ Unif[L], satisfying

Pe + ν · γ ≤

Nϵ1(D) sup
PY |X∈D

EY |X∼PY |X

[
min

{
LA2−ι̂(U ;Y ), 1

}]
+ ϵ1

+ ν ·Nϵ2(E)

(
sup

PZ|X∈E
2 ·EZ|X∼PZ|X

[(
1 + 2−ι(U ;Z)

)−B
]

+
√
BA−1

)
+ ν · ϵ2,

where we assume (U,X, Y, Z) ∼ PU,XPY |XPZ|X in the ex-
pectation, and ι̂(U ;Y ) is the information density computed for
compound channels by the joint distribution PU,X P̂Y |XPZ|X ,
assuming that ι̂(U ;Y ) is almost surely finite for every PY |X ∈
D.

Proof. Since the encoder and the decoder are uninformed of
the transmission channel, we first design our coding strat-
egy assuming that the transmission channel to the legitimate
decoder is fixed to P̂Y |X ∈ D. However, note that the
eavesdropper is aware of both the transmission channel and
the eavesdropping channel PZ|X ∈ E that are in use.

Let C := ((Ūi, M̄i), Ti)i where (Ti)i is a Poisson process,
Ūi

iid∼ PU , and M̄i
iid∼ PM (where PM = Unif[L]). This is

a random codebook that is known to both the encoder and
the decoder. Conditioned on using this codebook, we analyze
the error probability and secrecy as follows. We will fix the
codebook later.

Let A ∼ Unif[A] be independent of (M, C). The encoder
observes the message M ∼ PM , computes U = ŨPU×δM (A)
by the Poisson functional representation [55], and sends the
generated X|U ∼ PX|U . The decoder observes the channel
ouptut Y and recovers M̂ = M̃P̂U|Y (·|Y )×PM

where P̂U |Y is
the conditional distribution computed by the joint distribution
PU,X P̂Y |X . We have (M,A,U,X, Y, Z) ∼ PM × PA ×
PU,X P̂Y |X P̂Z|X . For the case of a fixed P̂Y |X ∈ D, the error
probability P

{
M ̸= M̂

}
in this case, denoted by Pe(P̂Y |X),

can be bounded as follows:

Pe(P̂Y |X)

≤ E

[
P
(
(U,M) ̸= (Ũ , M̃)P̂U|Y (·|Y )×PM

|M,A,U, Y
)]

(a)

≤ E

[
min

{
A

dPU × δM

dP̂U |Y (·|Y )× PM

(U,M), 1
}]

= E

[
min

{
LA2−ι̂U;Y (U ;Y ), 1

}]



≤ sup
PY |X∈D

EY |X∼AY |X

[
min

{
LA2−ι̂U;Y (U ;Y ), 1

}]
(5)

=: Pe

where (a) is by the conditional generalized Poisson matching
lemma [14], and we define (5) to be Pe.

For the secrecy measure γ, note again that the wiretap
channel PZ|X is known to the eavesdropper, and for this fixed
choice of PZ|X , for the total variation distance γ(PZ|X), we
write

E
[∥∥∥PM,Z|C(·, ·|C)− PM × PZ|C(·|C)

∥∥∥
TV

]
= E

[∥∥∥PZ|M,C(·, ·|C)− PZ|C(·|C)
∥∥∥
TV

]
≤ E

[∥∥∥PZ|M,C(·, ·|C)− PZ(·)
∥∥∥
TV

]
+

E
[∥∥∥PZ|C(·|C)− PZ(·)

∥∥∥
TV

]
(a)

≤ 2 ·E
[∥∥∥PZ|M,C(·, ·|C)− PZ(·)

∥∥∥
TV

]
= 2 ·E

[∥∥∥A−1
A∑

a=1

PZ|U (·|ŨPU×δM (a))− PZ(·)
∥∥∥
TV

]
(b)

≤ 2 ·E
[(
1 + 2−ι(U ;Z)

)−B
]
+
√
BA−1

≤ sup
PZ|X∈E

2 ·E
[(
1 + 2−ι̂(U ;Z)

)−B
]
+
√
BA−1 (6)

=: γ̄

where (a) is by the convexity of total variation distance, (b)
is by [14, Proposition 3] since

{
ŨPU×δm(a)

}
a∈[A]

iid∼ PU for
any m, and we define (6) to be γ.

Let Pe

(
PY |X , c

)
denote be the probability of error when

the legitimate channel is PY |X and the codebook is C = c and
also let γ

(
PZ|X , c

)
denote the total variation distance γ when

the wiretap channel is PZ|X and the codebook is C = c.
Let D̃ ⊆ D attain the minimum in Nϵ1(D) and Ẽ ⊆ E

attain the minimum in Nϵ2(E). Consider any PY |X ∈ D and
any PZ|X ∈ E , and let P̃Y |X ∈ D̃, P̃Z|X ∈ Ẽ satisfy

sup
x∈X

∥∥∥PY |X(·|x)− P̃Y |X(·|x)
∥∥∥
TV

≤ ϵ1,

sup
x∈X

∥∥∥PZ|X(·|x)− P̃Z|X(·|x)
∥∥∥
TV

≤ ϵ2.

The total variation distance between the joint distribution
of M,A,U,X, Y, Z under the channel PY |X (or PZ|X ) con-
ditional on C = c and the joint distribution under the channel
P̃Y |X (or P̃Z|X ) conditional on C = c is also bounded by ϵ1

(or ϵ2). Therefore, we have
∣∣∣Pe(PY |X , c)− Pe(P̃Y |X , c)

∣∣∣ ≤ ϵ1

and
∣∣∣γ(PZ|X , c)− γ(P̃Z|X , c)

∣∣∣ ≤ ϵ2.
Hence,

Pe(PY |X , C) + ν · γ(PZ|X , C)

≤ Pe

(
P̃Y |X , c

)
+ ϵ1 + ν · γ

(
P̃Z|X , c

)
+ ν · ϵ2

≤
∑

P̃Y |X∈D̃

Pe

(
P̃Y |X , c

)
+ ϵ1

+ ν ·
∑

P̃Z|X∈Ẽ

γ
(
P̃Z|X , c

)
+ ν · ϵ2.

Combining with our previous analyses on the error proba-
bility and secrecy, we have

EC

[
sup

PY |X∈D,PZ|X∈E

(
Pe(PY |X , C) + ν · γ(PZ|X , C)

) ]
≤ EC

[ ∑
P̃Y |X∈D̃

Pe

(
P̃Y |X , C

)
+ ϵ1

+ ν ·
∑

P̃Z|X∈Ẽ

γ
(
P̃Z|X , C

)
+ ν · ϵ2

]
≤ |D̃| · Pe + ν · |Ẽ | · γ + ϵ1 + ν · ϵ2,

and there exists a fixed set of points ((ūi, m̄i), ti)i such that
conditioned on codebook C = ((Ūi, M̄i), Ti)i = ((ūi, m̄i), ti)i
the desired bound in our theorem is attained, and hence the
proof is completed.

C. Recovery of the Asymptotic Results

In this section, we recover the existing asymptotic re-
sults [2]. The procedure is generally similar to Section V
where we recover the asymptotic information hiding capac-
ity [1]. In [2], it was assumed that all the random vari-
ables are discrete, the channels are memoryless, and D :=
{Pn

Y1|X , . . . , Pn
YJ|X} and E := {Pn

Z1|X , . . . , Pn
ZK|X} for some

finite J,K ∈ N+. The setting [2] can be understood as Figure 3.

Fig. 3. Discrete memoryless compound wiretap channel setting in [2].

By [2], for discrete memoryless channels, an achievable
secrecy rate is

R = max

[
min
j

I(U ;Yj)−max
k

I(U ;Zk)

]
= maxmin

j,k
[I(U ;Yj)− I(U ;Zk)] , (7)

where the maximum is taken over all distributions PU,X such
that the auxiliary random variable U satisfies the Markov chain



U ↔ X ↔ (Yj , Zk) for j = 1, . . . , J and k = 1, . . . ,K. Intu-
itively, this means that we should design the auxiliary random
variable U that maximizes the worst-case communication rate
I(U ;Yj)− I(U ;Zk), where we consider the worst receiver in
D and the most-powerful eavesdropper in E .

We now show the achievability of the above asymptotic
rate as a direct corollary of Theorem 5. Fix PU,X that
achieves the maximum in (7). Within the choices of D′ :=
{PY1|X , . . . , PYJ|X}, take P̂Y |X to be the one that minimizes
I(U ;Y ). Assume (M,U,X, Y, Z) ∼ PM × PU,X P̂Y |XPZ|X .
Write the information density and mutual information obtained
terms from this distribution as ι̂(U ;Y ) and Î(U ;Y ), respec-
tively. Fix a coding rate R = Î(U ;Y )− I(U ;Z)− ϵ, and we
are left to show that this rate is achievable for any ϵ > 0.

Consider any channel P ′
Y |X from D′. Let Pλ := (1 −

λ)P̂Y |X + λP ′
Y |X for 0 ≤ λ ≤ 1. Write Iλ(U ;Y ) for the

mutual information computed assuming Y |X ∼ Pλ. It is
straightforward to check that

d

dλ
Iλ(U ;Y )

∣∣∣
λ=0

= EY |X∼P ′
Y |X

[ι̂(U ;Y )]− Î(U ;Y ).

By the optimality of P̂Y |X , the above derivative is nonnegative,
and hence

EY |X∼P ′
Y |X

[ι̂(U ;Y )] ≥ Î(U ;Y ). (8)

Therefore, having i.i.d. sequences (Un, Xn, Y n, Zn) ∼
Pn
U,XPn

Y |XPn
Z|X and taking L = ⌊2nR⌋, A = 2n(I(U ;Z)+ϵ/2)

and B = 2n(I(U ;Z)+ϵ/3), by the law of large numbers, the
following terms in Theorem 5

LA2−ι̂(U ;Y )
(a)

≤ 2nR+n(I(U ;Z)+ϵ/2)−
∑n

i=1 ι̂(Ui;Yi) → 0,(
1 + 2−ι̂(U ;Z)

)−B (b)

≤ 2
∑n

i=1 ι̂(Ui;Zi)−n(I(U ;Z)+ϵ/3) → 0,
√
BA−1 =

√
2n(I(U ;Z)+ϵ/3)−n(I(U ;Z)+ϵ/2) → 0,

exponentially as n → ∞, where (a) is by (8) and (b) used
(1 + 2−x)−2y ≤ 2x−y .

Similar to the discussions on Theorem 2 recovering asymp-
totic hiding capacity in Section V, it is left to bound the
ϵ-covering numbers Nϵ1(D), Nϵ2(E) in Theorem 5. By con-
structing ϵ-covers of them and by Proposition 4, we know
Nϵ1(Dn) ≤ Nϵ1/n(D) = O((n/ϵ)|X |·|Y|) and similarly
Nϵ2(En) ≤ O((n/ϵ)|X |·|Z|), which grow much slower than
the exponential decrease of above terms. Therefore we have
Pe + ν · γ → 0 as n → ∞.

VII. FUTURE APPLICATIONS

We briefly discuss some future directions related to the
information hiding problem.

In recent years, with the great success of artificial intel-
ligence, software based on generative models is now able
to produce content as realistic as works by human creators.
However, the issue of copyright has become controversial:
generative models can potentially be trained on public data
without obtaining permission from human authors. To protect
intellectual property and prohibit the unauthorized use of

original works in the training of generative models, practical
watermarking tools have been developed [70]–[72] to em-
bed information into human-created works before they are
published. However, most existing implementations rely on
ad hoc designs that may introduce vulnerabilities [73]. For
better design of such tools, it is crucial to develop a solid
understanding of the information hiding problem. As an ex-
ample, a principled design for text watermarking was proposed
in [73], following the theoretical analysis of the information
hiding problem [1]. Since our one-shot achievability results
generalize the asymptotic information hiding problem [1], and
can recover the asymptotic hiding capacity even if certain
assumptions are dropped, we are thus providing an alternative
understanding of the problem that is possibly more fundamen-
tal, and it is of interests to explore how can our nonasymptotic
information hiding results contribute to potentially improved
design of modern watermarking technologies.

Moreover, steganography is closely related to the informa-
tion hiding problem (see [29]), and an interesting connection
between steganography and minimum entropy coupling [74]–
[76] has been discussed in [77]. Considering that the coding
scheme in this paper is based on the Poisson functional repre-
sentation [55], which is also related to the minimum entropy
coupling (see discussions in [74]), it is worth investigating
whether there are deeper connections between minimum en-
tropy coupling and the one-shot information hiding problem
studied in this paper.

VIII. CONCLUSION

In this paper, we derive novel one-shot achievability results
for two fundamental secrecy problems in information theory:
the information hiding problem [1] and the compound wiretap
channel [2]. Our bounds are based on the Poisson matching
lemma combined with a covering argument, and they apply
to both continuous and discrete settings. For both problems,
unlike most existing studies, we do not assume that the decoder
knows the channel state in the one-shot setting. The proposed
one-shot results hold for arbitrary source distributions and gen-
eral channel classes (not necessarily memoryless or ergodic),
and they recover existing asymptotic results when applied
to discrete memoryless channels, potentially under distortion
constraints. Thus, our results offer alternative, and potentially
simpler, proofs of known capacity theorems. We have also
discussed possible generalizations and future applications.
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[57] Y. Liu, W.-N. Chen, A. Özgür, and C. T. Li, “Universal exact com-
pression of differentially private mechanisms,” Advances in Neural
Information Processing Systems, 2024.

[58] Y. Liu and C. T. Li, “One-shot coding over general noisy networks,”
in 2024 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2024.

[59] J. Scarlett, “On the dispersions of the gel’fand–pinsker channel and dirty
paper coding,” IEEE Transactions on Information Theory, vol. 61, no. 9,
pp. 4569–4586, 2015.

[60] A. C. Berry, “The accuracy of the Gaussian approximation to the sum
of independent variates,” Transactions of the American Mathematical
Society, vol. 49, no. 1, pp. 122–136, 1941.

[61] C.-G. Esseen, “On the Liapunov limit error in the theory of probability,”
Ark. Mat. Astr. Fys., vol. 28, pp. 1–19, 1942.

[62] W. Feller, An introduction to probability theory and its applications,
2nd ed. Wiley, New York, 1971, vol. 2.

[63] F. Hartung and M. Kutter, “Multimedia watermarking techniques,”
Proceedings of the IEEE, vol. 87, no. 7, pp. 1079–1107, 1999.

[64] R. Dobrushin, “Optimum information transmission through a channel
with unknown parameters,” Radio Eng. Electron, vol. 4, no. 12, pp.
1–8, 1959.

[65] J. Wolfowitz, Simultaneous Channels. New York: Springer-Verlag,
1980.

[66] M. Hayashi, “General nonasymptotic and asymptotic formulas in chan-
nel resolvability and identification capacity and their application to the
wiretap channel,” IEEE Transactions on Information Theory, vol. 52,
no. 4, pp. 1562–1575, 2006.
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