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Abstract—Towards the development of 6G mobile, it is promis-
ing to integrate a large number of devices from multi-dimensional
platforms, and it is crucial to efficiently measure the performance
of the network, i.e., solving the maximum multiflow problem in
multi-hop networks. The problem is usually solved in two steps:
first find the scheduling rate region, and then find the maximum
multiflow that can be supported by achievable link rates. How-
ever, the scheduling problem is NP-hard, which makes solving
the multiflow problem in large-scale networks computationally
prohibitive. In this paper, we provide efficient algorithms that
can provably output the optimal solutions, without the need
of the whole scheduling rate region. Our unified framework
works in general multi-source multi-sink networks, with network
coding performed on intermediate nodes, and propagation delays
can be utilized in scheduling. We prove our algorithms output
exact-optimal solutions (instead of approximations) in a finite
number of iterations, and perform various experiments to show
the advantages over conventional approaches.

Index Terms—multihop network, maximum multiflow prob-
lem, network coding, wireless scheduling, network throughput

I. INTRODUCTION

Over the past years, both the number of users in wireless
networks and the services to be provided have experienced sig-
nificant growth. To deploy the next generation mobile system,
it is expected that a massive connectivity and emerging ap-
plications should be supported. To design large-scale, highly-
connected wireless systems and to measure their performance,
it is crucial but very difficult to find the maximum multiflow
(MMF) and maximum concurrent multiflow (MCMF) that can
be supported by collision-free link schedules of the network.

The MMF (or MCMF) problem addresses the maximum
total (or concurrent) throughput between multiple source nodes
and sink nodes supported by achievable link rates, and is one
of the problems at the heart of network communication theory.
The key issues affecting the performance of multihop wireless
networks are the wireless interference and the scheduling rate
region. To solve the MMF (or MCMF) problem, traditional
methods usually first use a link conflict graph to model the
wireless interference [1], then convert the scheduling problem
to the maximum independent set problem (which is a well-
known NP-hard problem that is also hard to approximate [2])
in the graph for searching collision-free schedules, and finally
calculate the maximum (concurrent) throughput under the
constraints described by the scheduling rate region. Due to the
hardness of scheduling, it is unrealistic to solve the MMF and
MCMF problems in large-scale networks by this way. In [3]
it has been shown that both problems are NP-hard even in
very simple settings. Although there exist joint optimization

methods with low complexities, most of them only approx-
imate the throughput with certain constraints (possibly in a
decentralized manner). However, we are interested in deriving
the exact-optimal solutions in a finite number of iterations.

In this paper, we design practical algorithms that efficiently
solve the MMF and MCMF problem, which provably provide
optimal solutions (instead of approximations by distributed
optimization frameworks). Our algorithms work in general
multi-hop networks with network coding [4]–[6] on interme-
diate nodes, and jointly calculate the maximum (concurrent)
multiflow and the scheduling rate region by employing a
decomposition method. Compared to the conventional method
(first calculate the scheduling rate region, and then solve the
MMF and MCMF problems), we only need a subset of the
scheduling rate region, and hence can be much more efficient
in practice. Except theoretic analysis, we use experiments to
show our advantages over the two-step method. Our unified
framework can be easily generalized to the networks with
non-negligible propagation delays (e.g., underwater and deep-
space), for which it has been recently discussed [7]–[11] that
scheduling region can be significantly improved but becomes
even harder to compute, and all the advantages (generality,
efficiency and optimality) of our approach are maintained.

We briefly summarize our contributions and advantages
against existing results.

• We provide practical algorithms for the MMF and MCMF
problems, which can be much more efficient than [1], [3].

• We solve the multiple multicast problem with network
coding [4]–[6] allowed, which is the most general case in
multi-source multi-sink networks. In comparison, existing
works [1], [3], [12] only study multiple unicast case.

• We prove our algorithms output exact-optimal solutions,
instead of giving approximations or converging to opti-
mum by decentralized optimization methods [13]–[16].

• Our unified framework covers the case where large propa-
gation delays are utilized in scheduling [7], [8], [10], [11],
which is promising in certain (e.g., underwater) networks.

The remainder of the paper is organized as follows. We
first provide a comprehensive literature review in Section II.
In Section III, we describe the network model and problem for-
mulation. We propose our algorithms in Section IV and prove
the optimality. The performance evaluation is in Section V.

II. RELATED WORKS

The literature review includes three parts: First, we discuss
the MMF and MCMF problems. Second, we review related
optimization frameworks and network coding. Finally, we



review recent works on utilizing non-negligible propagation
delays in certain (e.g., underwater and deep-space) networks.

A. Maximum Multiflow Problem

The maximum multiflow (MMF) and the maximum con-
current multiflow (MCMF) are core problems in the theory
of network communications. The MMF problem studies the
maximum throughput between selected source nodes and sink
nodes [1], [3], and the maximum concurrent multiflow prob-
lem [17] models the case where every sender-receivers session
transmits messages concurrently. The NP-hardness of both
problems have been proved in [3], even in very simple network
settings. In [18], [19], both the MMF and MCMF problems
are discussed under the interference model that nodes cannot
transmit and receive simultaneously. By enforcing interfer-
ence constraints on links, [20] guarantees the schedulability
and develops constant-approximation algorithms. More linear
programming formulation and approximation algorithms can
be found in [3], [17], [18]. In [21], the MMF and MCMF
problems are discussed by dividing the cases to full-duplex
systems and half-duplex systems, both of which are covered
by our interference model in this paper. The MMF problem has
been extended to unicast networks with network coding [12],
where the network coding [4]–[6] is treated as a scheme to
decrease the impact of wireless interference.

To support the (concurrent) multiflow in networks, it is
usually required to first find achievable link rates, which forms
the scheduling rate region. To solve the scheduling problem,
in [1], the effects of wireless interference can be modeled
by a conflict graph, and the scheduling problem is equivalent
to searching all the maximal independent sets in the conflict
graph, which is an NP-hard problem that is also hard to
approximate [2]. Due to this hardness, it is computationally
prohibitive to calculate the scheduling region before solving
the MMF (or MCMF) problem. In practice, optimization
algorithms (possibly in a decentralized manner) can be used
to approximate the solutions with a low complexity (see
Section II-B as follows), but our objective is to find the exact
maximum (concurrent) multiflow value in an efficient way.

B. Joint Optimization Frameworks and Network Coding

Existing works on the MMF (or MCMF) problem [1], [3],
[12] only study the multiple unicast case, i.e., each source node
is paired with one sink node. However, we consider multiple
multicast in general multi-source multi-sink networks, where
each of a number of source nodes transmits a message to a
set of sink nodes. In this scenario, network coding [4]–[6] is
an effective technique to improve the network performance,
and the throughput can increase up to several folds [22],
[23]. The joint consideration of throughput, scheduling and
network coding has been widely studied in [13]–[16], [24] for
various objectives, e.g., maximizing throughput or minimizing
the energy consumption under certain constraints. These ap-
proaches are either converging-to-optimal with respect to some
constraints or only approximate the solutions.

In [24], the authors decompose the joint optimization of
scheduling and network coding into two subproblems, sim-
ilar with us decomposing the joint MMF (and MCMF) and
scheduling problems. However, some differences are as fol-
lows. Except we provide a unified framework that also covers
the case where the propagation delays are non-negligible
and utilized in scheduling (see Section II-C as follows), we
study the multi-source (instead of single source) multi-sink
case, where the trade-off between the rates of the sources
becomes an important factor of consideration. Moreover, the
algorithm in [24] is an iterative algorithm that only converges
to the optimum, but our algorithms provably output the exact
optimum in a finite number of iterations (also see Remark 3).

C. Networks with Non-negligible Propagation Delays

In the existing theory of terrestrial wireless communications,
though the communication media (e.g., radio, light, sound)
have nonzero propagation delays, they are usually short and
treated as a factor of interference [25]. However, in certain
environments, e.g., deep-space and underwater networks, the
propagation delays can be significantly longer. For example,
for sound (whose speed is about 1.5 kilometers per second)
to propagate over a distance of 3 kilometers, the delay can be
about 2 seconds. Recent studies [7]–[11], [26], [27] show that
it is promising to utilize the delays to significantly improve the
network performance. For such scenarios, mixed integer linear
programming for some heuristic algorithms [11], [27] and
dynamic-programming based algorithms [10] were proposed.

In [7], [8], by extending the conflict graph [1] to a weighted
graph, the scheduling rates can be exactly characterized with
even higher complexity. We utilize their formulation in our
framework, and provide an efficient algorithm that solves the
MMF and MCMF problems while also utilizing the delays to
improve the scheduling rates. Existing methods for the MMF
and MCMF problems cannot be directly extended to this case.

III. NETWORK MODEL

In this section, we define the network model and formulate
the MMF and MCMF problems.

A. Network Model

We use a link-wise network model [1], [3], [7], [8], where
each link is associated with a collision set, including all the
links that can be interfered by it. It is called the binary
interference model [1], [7], and it is not difficult to cover
the physical interference model by signal-to-interference-and-
noise ratio [8], [15]. We assume the network is acyclic and
discrete [7], [8], [26] in the sense that time is slotted and the
link delays are multiples of a length of a time slot, which is
justified in [26]. The intermediate nodes can wait until enough
packets are collected before performing coding on the packet.

The network can be modeled by a tuple N = (V,L, I, D),
where V is the node set, L ⊆ V2 is the link set, I = (I(l), l ∈
L) is the set of collision sets where l′ ∈ I(l) if l′ is in the
interference range of l and D : L2 → Z is the link-wise delay
matrix specifies the delays between links. We assume each link
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Fig. 1. ND=1
4,1 : nodes represents network link, edges represent the collision

relations between nodes, and edge weights represent propagation delays.

has a unit bandwidth and allow parallel links between nodes.
(L, I, D) can form a weighted, directed graph N where L is
the finite vertex set, (l, l′) is an edge if l′ ∈ I(l), and D(l, l′)
is the weight on the directed edge (l, l′), which degrades to an
unweighted graph (L, I) if delays are ignored [3], [12]. This
graphical approach helps the discussion on our algorithms.

We now describe the communication task over the network
N = (V,L, I, D). For k ∈ N+, let S = {s1, . . . , sk} ⊆ V be
the set of source nodes. We assume the information sources at
different source nodes are mutually independent. Each source
node si is associated with a set of sink nodes Dsi ⊆ V that
have to decode the information at si. We allow a node to be
both a source node and a sink node corresponding to another
source node. For i ̸= j, we may have Dsi ∩ Dsj ̸= ∅, i.e.,
different source nodes can share same sink nodes. Each link
l ∈ L represents a point-to-point channel with unit capacity.
The sets of input channels and output channels of a node v ∈ V
are denoted by In(v) ⊆ L and Out(v) ⊆ L, respectively.

To explain the model, we use a line network [7]–[10].

Example 1. Consider an L-hop unicast line network: there
are L+ 1 nodes V = {1, 2, . . . , L+ 1}, with link set

L = {li ≜ (i, i+ 1), i = 1, . . . , L}.
Each link has a unit delay. We use a K-hop interference model:
the reception of a node has possible collisions from nodes in
K hops. The nodes are half-duplex. The collision set of li is

IK(li) = {lj : j ̸= i, |i+ 1− j| ≤ K}. (1)

The link li is active in time slot t if node i sends a signal in
time slot t to node i+ 1. Hence the link-wise delay matrix is

D(li, lj) = 1− |i+ 1− j|. (2)

We denote it by ND=1
L,K , and it can be represented by a graph,

where ND=1
4,1 is shown in Figure 1 as an example.

B. Collision-free Schedules and Rate Region

We define collision-free schedules, similar to [7], [8]. Since
we assume the time is slotted, when link l is active at time slot
t and link l′ ∈ I(l) is active at time slot t+D(l, l′), we say
a collision occurs. In each time slot we use a binary number
to indicate whether a link sends messages or not. Hence we
use an infinite binary matrix S : L × N → {0, 1} with rows
indexed by L and columns indexed by N to specify a schedule:
S(l, t) = 1 indicates that link l is active in time slot t, and
S(l, t) = 0 indicates it is inactive. S(l, t) has a collision in
N if S(l, t) = S(l′, t +D(l, l′)) = 1 for a certain l′ ∈ I(l).
Otherwise S(l, t) is collision free. A schedule S is collision

free if S(l, t) is collision free for all (l, t). There are different
(though with similar ideas) definitions if delays are simply
ignored, e.g., [3], but we aim to provide a framework general
enough to cover the networks with non-negligible delays. For
a collision-free schedule S and a link l, the link rate is

RS(l) = lim
T→∞

1

T

T−1∑
t=0

S(l, t). (3)

If RS(l) exists for all l ∈ L, we call RS = (RS(l), l ∈ L)
the rate vector of S. For a network N = (V,L, I, D), a
rate vector R = (R(l), l ∈ L) is said to be achievable if
for all ϵ > 0, there exists a collision-free schedule S such that
RS(l) > R(l)− ϵ for all l ∈ L. For a link l, the rate R(l) can
stand for the maximum number of information symbols that
can be sent on the channel per time slot. Then each achievable
rate vector can be viewed as a rate constraint for the network.

The collection R(N ) of all the achievable rate vectors is
called the (scheduling) rate region of N . We may use R
instead of R(N ) to simplify the notation when the context
is clear. It is proved in [7] that R is a convex polytope, and
can be achieved by using periodic collision-free schedules.

C. Problem Formulation

We define the maximum multiflow (MMF) and the maxi-
mum concurrent multiflow (MCMF) problems. Most existing
literature consider multiple unicast, i.e., each source only has
one corresponding sink with a certain demand [3], [12], [21].
However, we discuss general multiple multicast, with network
coding [4]–[6] on intermediate nodes, where the nodes can
encode their received data before passing them on.

For each multicast session, one source corresponds to mul-
tiple sinks. Though we use network coding to attain the maxi-
mum information flow in a session, we do not consider coding
between sessions (i.e., inter-session network coding [28], [29])
in this paper for the sake of simplicity, since it is in general a
hard problem [30] and can even be undecidable [31]. We say

F = (F (l) ∈ N≥0 : l ∈ L) (4)

is a valid flow from source node s ∈ V to sink node t ∈ V
with respect to a rate vector R if it satisfies:

• 0 ≤ F (l) ≤ R(l) for all l ∈ L, i.e., the flow along link l
does not exceed the rate constraint R(l).

• The flow conservation equation
∑

l∈In(v) F (l) =∑
l∈Out(v) F (l) for all v ∈ V\{s, t}.

We see the flow
∑

l∈Out(s) F (l) out of s equals to the flow∑
l∈In(t) F (l) into t, and this value is called the value of F ,

denoted as val(F ). We say F is a max-flow from s to t with
respect to R if F is a flow and has a value no smaller than
the value of any other flow from s to t with respect to R.

1) Maximum Multiflow (MMF) Problem: Consider a source
si multicasts a message to nodes in the set Dsi =
{ti,1, . . . , ti,ki}, with network coding [4]–[6], at a rate

vi = min
j

val(Fi,j),



where Fi,j is a flow from si to ti,j for each j and the rate of
communication along link l is maxj Fi,j(l).

We now put the flows from the source nodes s1, . . . , sk to-
gether. Fix a rate vector R. Link l has to accommodate all these
k flow requirements simultaneously, i.e.,

∑k
i=1 maxj Fi,j(l) ≤

R(l) for all l ∈ L. We maximize the sum of the rates of
multicasting these k sources, and it is called the maximum
multiflow (MMF) problem, which is formulated by the follow-
ing linear program, combining the linear program for multiple
unicast [1], [3], [12] and the program for single multicast [24]:

LP-MMF(R̃) :

maximize
k∑

i=1

vi (5)

subject to
Fi,j is a valid flow, ∀i ∈ [k], j ∈ [ki],∑
l∈Out(si)

Fi,j(l) =
∑

l∈In(ti,j)

Fi,j(l) = vi, ∀i ∈ [k], j ∈ [ki],

Gi(l) ≥ Fi,j(l), ∀l ∈ L, i ∈ [k], j ∈ [ki],
k∑

i=1

Gi(l) ≤ R(l), ∀l ∈ L, (6)

R ∈ R̃,
where [k] := {1, . . . , k}, k, ki ∈ N+,∀i. The linear program
takes a polytope R̃ (a subset of the scheduling rate region) as
an input. The variables Gi(l), i ∈ [k], l ∈ L are used to impose
the constraint

∑k
i=1 maxj Fi,j(l) ≤ R(l). The constraint (6)

gives a dual vector that will be used in our algorithms, and
the dual variable corresponding to link l means how sensitive
the optimization objective is to the rate constraint R(l).

2) Maximum Concurrent Multiflow (MCMF) Problem:
While the MMF problem is to find the link schedule that can
support the maximum total rate of transmission of the sources,
the maximum concurrent multiflow (MCMF) problem is to
find the link schedule such that all the sources can transmit
concurrently at the maximum rate [3], [17], [18]. The settings
of MCMF problems in [3], [18] are also for multiple unicast.

More generally, instead of maximizing the sum rate∑k
i=1 vi, we maximize ϕ such that the source si can multicast

at a rate vi = ϕγi, where γi is the desired traffic rate at si.
The MCMF problem is formulated as follows [3], [24]:

LP-MCMF(R̃) :
maximize ϕ (7)
subject to
Fi,j is a valid flow, ∀i ∈ [k], j ∈ [ki],∑
l∈Out(si)

Fi,j(l) =
∑

l∈In(ti,j)

Fi,j(l) = ϕγi, ∀i ∈ [k], j ∈ [ki],

Gi(l) ≥ Fi,j(l), ∀l ∈ L, i ∈ [k], j ∈ [ki],
k∑

i=1

Gi(l) ≤ R(l), ∀l ∈ L, (8)

R ∈ R̃.

We also utilize the dual vector given by (8) in the algorithms.

IV. ALGORITHMS

In this section, we provide two algorithms for the networks
with and without propagation delays, in a unified framework.
We prove both algorithms output exact-optimal solutions (in-
stead of approximations) in a finite number of iterations.

A. Algorithm for Networks with Negligible Delays

We first discuss the conventional case where the propagation
delays are negligible. Our algorithm calculates the MMF or
MCMF without the need of the whole scheduling rate region,
and provably outputs the exact-optimal MMF or MCMF.

Since a collision-free schedule can be found by searching
an independent set in the graph (L, I) [7], we attach a weight
ai ≥ 0 to link li, and would like to maximize the weighted
total rate, i.e., for the scheduling rate region R, we solves

argmax
R∈R

⟨a, R⟩, (9)

where a = (ai)i=1,...,|L|, and ⟨·, ·⟩ is the inner product.
Remark 1. For (9), the objective is to maximize the weighted
sum rate instead of just the sum rate, since a different weight
vector could be used in each iteration of our algorithms (see
step 4 of Algorithm 1 or step 5 of Algorithm 2). These weights
are also crucial to the graphical approach for Algorithm 2.

This corresponds to a weighted maximal independent set
problem [3], [24] that can be solved by integer linear program-
ming (ILP) by maximizing over S(li) ∈ {0, 1} for li ∈ L:

ILP: maximize
|L|∑
i=1

aiS(li)

subject to S(li) + S(lj) ≤ 1, ∀ li, lj : lj ∈ I(li).
The solution gives us a maximal independent set of (L, I), and
the corresponding achievable rate vector is S = (S(li), li ∈
L), which is a vertex of the scheduling rate region R.

Based on (9), we iteratively search the MMF or MCMF
and the scheduling region. Even though our target is the op-
timal value instead of approximated or converging-to-optimal
values, it is unnecessary to find the entire scheduling region
before solving the MMF or MCMF problem. Suppose flow(·)
is the function for calculating the MMF or MCMF in a given
polytope, which can be a subset of the scheduling region. From
i = 1, in each iteration, the algorithm works as follows:

1) We start with a subset of the scheduling region Ri,
which is formed by the vertices of R we have known
(it is reasonable to assume some rate vectors are known,
e.g., by activating the first link all the time and inacti-
vating others, the vector [1, 0, . . . , 0]⊺ is achievable). In
the first iteration, we start with an arbitrarily chosen rate
vector R1, i.e, R1 = {R1}. We run the linear program
LP-MMF(Ri) (or LP-MCMF(Ri)) to obtain the dual
vector µi, corresponding to the constraint in (6) (or (8)).

2) By the ILP, we find a new rate vector Ri+1 by

Ri+1 = argmax
R∈R

⟨µi, R⟩. (10)



Algorithm 1 Algorithm for Networks without Delays
Input: a network (V,L, I)
Output: maximum multiflow v

1: Start with any rate vector R1 ∈ R, R1 ← {R1}
2: for i = 1, 2, . . . do
3: Run vi ←LP-MMF(Ri) (or vi ←LP-MCMF(Ri)) and

obtain the dual vector µi

4: Run ILP to find Ri+1 ← argmax
R∈R

⟨µi, R⟩
5: Ri+1 ← conv (Ri ∪ {Ri+1})
6: if ⟨µi, Ri+1⟩ = maxR∈Ri

⟨µi, R⟩ then
7: return vi

3) We update the subset of the scheduling region by com-
puting the convex hull Ri+1 = conv (Ri ∪ {Ri+1}).

4) If ⟨µi, Ri+1⟩ = maxR∈Ri⟨µi, R⟩, the algorithm termi-
nates and outputs the last optimal value of LP-MMF(Ri)
(or LP-MCMF(Ri)); otherwise it comes back to step 1
and continues.

We then prove that Algorithm 1 will terminate and output
the maximum (concurrent) multiflow in finite iterations.

Theorem 1 (Optimality). For a network N = (V,L, I),
Algorithm 1 will terminate and output the maximum multiflow
(or the maximum concurrent multiflow).

Proof. The scheduling rate region is a polytope [1] with a fi-
nite number of vertices, and hence Algorithm 1 will eventually
terminate, since the worst case is that all the vertices are found
to solve the maximum (concurrent) multiflow problem.

We then show that the output is optimal; that is, when
the algorithm terminates, the output is exactly the MMF or
MCMF. We use flow(R) to denote the function that outputs
the MMF or MCMF with respect to a rate vector R.

Denote R as the entire rate region (which may not need
to be found), and Ri is the subset of R found until itera-
tion i. Suppose the algorithm terminates at iteration i′, i.e.,
⟨µi′ , Ri′+1⟩ = maxR∈Ri′ ⟨µi′ , R⟩. By substituting (10),

max
R∈R
⟨µi′ , R⟩ = max

R∈Ri′
⟨µi′ , R⟩. (11)

Suppose the optimal R in LP-MMF(Ri′) (or LP-
MCMF(Ri′)) is R∗. Note we can write LP-MMF(Ri′) as

maximize flow(R)− χRi′ (R̄)

subject to R = R̄, (12)

where χRi′ (R̄) is the characteristic function (which is 0 if R̄ ∈
Ri′ , or ∞ otherwise), which forces R̄ ∈ Ri′ . The dual vector
µi′ corresponding to the constraint in (6) (or (8)) is the same as
the dual vector corresponding to the constraint R = R̄ in (12).
Considering the Lagrangian of (12), at the optimum (R∗, R̄∗),
the subgradient satisfies 0 ∈ ∂R∗flow(R∗)−∂R∗χRi′ (R̄

∗)−µi′

and 0 ∈ ∂R̄∗flow(R∗)−∂R̄∗χRi′ (R̄
∗)+µi′ , and we have R∗ =

R̄∗. Hence, R∗ maximizes flow(R) − ⟨µi′ , R⟩ for R ∈ R|L|
≥0,

and maximizes ⟨µi′ , R⟩ for R ∈ Ri′ .

Fix any R′ ∈ R. Since R∗ maximizes flow(R) − ⟨µi′ , R⟩
for R ∈ R|L|

≥0,

flow(R∗)− ⟨µi′ , R
∗⟩ ≥ flow(R′)− ⟨µi′ , R

′⟩
≥ flow(R′)− ⟨µi′ , R

∗⟩,
where the last inequality is by (11) and the fact that R∗

maximizes ⟨µi′ , R⟩ for R ∈ Ri′ . Therefore, R∗ maximizes
flow(R) for R ∈ R and the proof is finished.

Remark 2. Algorithm 1 requires integer linear programming,
hence it does not have a polynomial time complexity, which is
expected since this problem is NP-hard [1], [3]. Algorithm 1
and Theorem 1 pave the way to the Algorithm 2 (and its opti-
mality) for networks with non-negligible propagation delays.

Remark 3. In [24], an algorithm based on subgradient op-
timization that decomposes the problem into two parts has
been discussed. Though it shares some similarities with ours,
our algorithm is guaranteed to find the optimum exactly
in a finite number of steps (assuming access to an integer
linear programming algorithm), whereas [24] is an iterative
algorithm that only converges to the optimum. As we will
see in the next section, terminating in a small number of
steps is especially important for networks with non-negligible
delays, since the update of the subset Ri of the scheduling
region is the bottleneck of the algorithm with exponential time
complexity, and should be performed as little as possible.

Example 2. Consider a 2-hop line network ND=0
2,1 under the

1-hop interference model. From R1 =
[
1 0

]⊺
, we solve

max v = R(l1) = R(l2)

s.t. 0 ≤ R(l1) ≤ 1,

0 ≤ R(l2) ≤ 0,

which gives us a maximum flow of value v = 0 inRi = {R1}.
We then use the ILP to find another rate vector:

max R(l1) +R(l2)

s.t. R(l1) +R(l2) ≤ 1,

which gives R2 =
[
0 1

]⊺
and R2 = conv(R1, R2). Next,

max v = R(l1) = R(l2)

s.t. R(l1) +R(l2) ≤ 1, R(l1), R(l2) ≥ 0

gives us the maximum flow in R2, v = 1/2. We can verify
that the resulting dual vector µ2 in this iteration gives

f(R2, µ2) = argmax
R∈R2

f(R2, µ2),

which meets the condition that the algorithm terminates. It is
also easy to verify that 1/2 is indeed the maximum flow value.

B. Algorithm for Networks with Non-negligible Delays

We extend the discussions to networks with non-negligible
delays, which is practical in certain (e.g., underwater or deep-
space) cases. It relies on a natural extension from the previous
framework by utilizing a graphical characterization [7], [8].



As shown in [7]–[11], utilizing the delays can significantly
improve the network performance. The key to solve the MMF
or MCMF problems in such networks is, we need a function
similar to (9) that can output a vertex of the scheduling region
in a time complexity at most exponential in |L| (which in
turn will be polynomial in the size of the scheduling graphs
below), which is more efficient than the cycle-enumeration
approach [7] with complexity doubly exponential in |L|.

We review the scheduling graph in [7]: For a collision-
free schedule matrix S and integers T ∈ N+, k ∈ Z, S[T, k]
denotes the submatrix of S consisting of columns kT, kT +
1, . . . , (k+1)T−1. If a submatrix S′ is formed by T columns
of S, its columns are indexed by 0, 1, . . . , T − 1.

Definition 1 (Scheduling Graph [7]). Given a network N and
an integer T > 0, the scheduling graph (MT , ET ) is a directed
graph that is defined as follows: the vertex set MT includes
all the |L| × T binary matrices A such that A = S[T, 0] for a
certain collision-free schedule S. The edge set ET includes all
the vertex pairs (A,B) such that A = S[T, 0] and B = S[T, 1]
for a certain collision-free schedule S.

Remark 4. For a network with negligible propagation delays,
the scheduling graph (MT , ET ) is a complete graph.

In [7], it has been shown that by choosing T ≥
maxl∈L maxl′∈I(l) |D(l, l′)|, calculating the scheduling region
is equivalent to searching all the simple cycles in the schedul-
ing graph, which is NP-hard. The scheduling problem then
may then even have doubly exponential complexity, since the
number of vertices in (MT , ET ) increases exponentially with
respect to |L|, and the cycle enumeration in (MT , ET ) is also
NP-hard in general.

Instead of enumerating cycles for the scheduling region, we
search maximum-mean-cycles (which can be solved in a time
complexity polynomial in the graph size) in a new graph, to
find the vertices of the scheduling region. We may only need
a few rate vectors to solve the MMF or MCMF problem.

Before describing our approach, we need some graphical
concepts. In a directed graph G, a path is a sequence of vertices
v0, v1 . . . , vm where for i = 0, 1, . . . ,m − 1, (vi, vi+1) is a
directed edge. A path is closed if v0 = vm. A cycle in G is a
closed path (v0, v1 . . . , vm) such that m ≥ 1, vi ̸= vj for any
0 ≤ i ̸= j ≤ m − 1 and v0 = vm, i.e., in such a sequence,
the only repeated vertices are the first and the last vertices.
Note a closed path can be decomposed into a sequence of
cycles [32], and this has been used in proving that it suffices to
enumerate all the simple cycles for calculating the scheduling
rate region [7]. In a graph where each edge is associated with
a weight, we say the weight of a directed cycle is the total
weight on the edges in the cycle. Then we say the average
weight of a directed cycle is the total weight divided by the
number of edges in the cycle. The maximum-mean-cycle is the
cycle in the given weighted, directed graph with the maximum
average weight over all directed cycles in the given graph.

It has been proved in [7], [8] that a collision-free, periodic
schedule is equivalent to a closed path (which can be decom-
posed to multiple simple cycles) in (MT , ET ) and vice versa,

i.e., the concatenation of a sequence of vertices in (MT , ET )
(which are matrices of size |L|×T ) forms a periodic, collision-
free schedule. In this paper, we define a weighted scheduling
graph and use the maximum-mean-cycle in it to solve (9).

Definition 2 (Weighted Scheduling Graph). Given a weight
vector a ∈ R|L| and a scheduling graph (MT , ET ) whose
vertices are matrices of size |L| × T , a weighted scheduling
graph (MT , ET , wa) is a directed, weighted graph defined as
follows: the vertex set is stillMT , and each edge is associated
with a weight. For a directed edge (v1, v2) in (MT , ET ), there
is a weighed, directed edge (v1, v2) in (MT , ET , wa) with
weight wa(v1, v2) = a⊺v21, where 1 = [1, . . . , 1]⊺ ∈ RT .

Since each achievable rate vector can be achieved by a
periodic, collision-free schedule, which corresponds to a cycle
in (MT , ET ) [7], we have the following result.

Lemma 2. For a weighted scheduling graph (MT , ET , wa)
and its maximum-mean-cycle C = (v0, v1, . . . , vm) with m ≥
0 and v0 = vm, the concatenation of the vertices in C gives a
periodic schedule S′ such that RS′ ∈ argmaxR∈R⟨a, R⟩.
Proof. For any R ∈ R, suppose it is achieved by a schedule
S that corresponds to a cycle (v0, v1, . . . , vm) in (MT , ET ),
by the definition of rate vectors (3). Given a = (ai)i=1,...,|L|,

⟨a, R⟩ =
|L|∑
i=1

aiR(li)

=

|L|∑
i=1

ai ·
1

mT

mT−1∑
t=0

S(li, t)

=
1

mT

|L|∑
i=1

mT−1∑
t=0

ai · S(li, t)

=

m−1∑
j=0

 1

mT

|L|∑
i=1

T−1∑
k=0

ai (vj(i, k))


=

1

mT

m−1∑
j=0

a⊺vj1,

which states that ⟨a, R⟩ equals to the average over values
a⊺vj1 for j = 0, 1, . . . ,m− 1.

Therefore, given a vector a, finding a vector that
solves (9) is equivalent to finding the maximum-mean-cycle
in (MT , ET , wa), which is a widely studied problem [33],
[34] that can be solved with time complexity Θ(nm), where
n is the number of nodes and m is the number of edges in
the graph. A classical algorithm is the Karp’s algorithm [33],
which is briefly reviewed below for the sake of completeness.

Given the graph with vertex set V and a source node s ∈ V ,
for each v ∈ V and every non-negative integer k, suppose
Fk(v) denotes the maximum weight of a length-k path from
s to v, and we say Fk(v) = −∞ if such a path does not exist.
Then the maximum cycle mean λ∗ can be derived from the
following theorem, whose proof can be found in [33].



Algorithm 2 Algorithm for Networks with Delays
Input: a network N = (V,L, I, D)
Output: maximum multiflow v

1: Start with any rate vector R1 ∈ R, R1 ← {R1}
2: Construct (MT , ET ) from N
3: for i = 1, 2, . . . do
4: Run vi ←LP-MMF(Ri) (or vi ←LP-MCMF(Ri)) and

obtain the dual vector µi

5: Construct (MT , ET , wµi
) by (MT , ET ) and µi

6: Find maximum-mean-cycle in (MT , ET , wµi
) and ob-

tain Ri+1 ← argmax
R∈R

⟨µi, R⟩
7: Ri+1 ← conv (Ri ∪ {Ri+1})
8: if ⟨µi, Ri+1⟩ = maxR∈Ri⟨µi, R⟩ then
9: return vi

Note we assume the graph (MT , ET ) is strongly connected,
and hence (MT , ET , wa) is also strongly connected. Other-
wise, we find the strongly connected components (with linear
time complexity), search for the maximum-mean-cycle in each
component and choose the one with the largest cycle mean.

Theorem 3 (Karp’s Theorem [33]). Given a strongly con-
nected graph, the maximum cycle mean λ∗ is given by

λ∗ = max
v∈V

min
0≤k≤n−1

Fn(v)− Fk(v)

n− k
, (13)

where V is the vertex set of the graph.

Fk(v) can be given by a recurrence relation in [33], where E
denote the edge set and w(u, v) denotes the weight on (u, v):

Fk(v) = max
(u,v)∈E

[Fk−1(u) + w(u, v)], k = 1, 2, . . . , n

with the initial conditions F0(s) = 0 and F0(v) = −∞, v ̸= s.
The Karp’s algorithm computes Fk(v) recurrently for k =
0, 1, . . . , n and v ∈ V . For more related discussions, we refer
the readers to [33], [34]. Finally, we present our Algorithm 2.

Theorem 4 (Optimality). For a network N = (V,L, I, D),
Algorithm 2 will terminate and output the maximum multiflow
(or the maximum concurrent multiflow).

The proof is similar to the proof of Theorem 1, though we
use Lemma 2 to justify that in iteration i′ when it terminates,
the maximum-mean-cycle in (MT , ET , µi′) gives

Ri′+1 = argmax
R∈R

⟨µi′ , R⟩,

and then we substitute it into

⟨µi′ , Ri′+1⟩ = max
R∈Ri′

⟨µi′ , R⟩,

which gives us the same result with (11). The remaining steps
are similar with the proof of Theorem 1 and hence are omitted.
Remark 5. Karp’s algorithm can find one maximum-mean-
cycle in a time complexity polynomial in |ET |, the number of
edges in the weighted scheduling graph. Nevertheless, |ET | is
exponential in |L|, the number of links in the communication

network. Therefore, the overall running time is at least expo-
nential in |L|, since we still desire the exact-optimal results.
However, we note that finding the entire scheduling rate region
generally has a time complexity exponential in |ET |, which
should be doubly exponential in |L|. As demonstrated in
experiments in Section V, our algorithms can be significantly
faster than the two-step method for both MMF and MCMF
problems even in very simple networks, since we do not need
the entire scheduling rate region.

We use ND=1
4,1 to illustrate our algorithm, which was also

used in [7], [8] in particular to illustrate their scheduling
scheme. However, we focus on the weighted scheduling graph
and the maximum-mean-cycle scheme, and our Algorithm 2
based on them, which are not discussed in [7], [8].

Example 3. We use ND=1
4,1 as an example (see Figure 1).

To first construct the scheduling graph, we find T =
max
l∈L

max
l′∈I(l)

|D(l, l′)| = 1 and denote the scheduling graph as

(M1, E1). The vertex set includes matrices of size 4×1, each
of which is a column of some collision-free schedules.

We have a vertex set M1 {v0, v1, . . . , v8}, where

v0 =


0
0
0
0

 , v1 =


1
0
0
0

 , v2 =


0
1
0
0

 , v3 =


0
0
1
0

 , v4 =


0
0
0
1

 ,

v5 =


1
0
0
1

 , v6 =


1
1
0
0

 , v7 =


0
1
1
0

 , v8 =


0
0
1
1

 . (14)

By implementing the algorithms in [7], [8] we can find the
scheduling rate region R, whose vertices are:
1/2
1/2
1/2
1/2

 ,


1/2
1/2
1/2
0

 ,


0
1/2
1/2
1/2

 ,


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 ,


1
0
0
1

 ,


0
0
0
0

 .

(15)
Then we show that we can find the maximum flow without

the need of the entire scheduling rate region (15).
Suppose we start with a rate vector R1 =

[
0 1 0 0

]⊺
and in the first iteration we solve the following linear program

max v = R(l1) = R(l2) = R(l3) = R(l4)

s.t. R(li) ≤ 0 i = 1, 3, 4

R(l2) ≤ 1

R(li) ≥ 0 i = 1, 2, 3, 4

We obtain the maximum flow v = 0 and the corresponding
dual vector is µ1 =

[
ϵ 0 ϵ 0

]⊺
with some ϵ > 0. We then

use µ1 to construct the corresponding weighted scheduling
graph. Consider the vertex set (14), for i = 0, 1, . . . , 8, the
weights on the edges of the weighted scheduling graph are:

w(vi, v0) = 0, w(vi, v1) = ϵ, w(vi, v2) = 0,

w(vi, v3) = ϵ, w(vi, v4) = 0, w(vi, v5) = ϵ,

w(vi, v6) = ϵ, w(vi, v7) = ϵ, w(vi, v8) = ϵ.



We can verify that there are 9 vertices and 56 edges.
By the maximum-mean-cycle algorithm, we solve
argmaxR∈R⟨µ1, R1⟩ and find R2 =

[
1
2

1
2

1
2

1
2

]⊺
.

We can check that the algorithm terminates in the next step.
Compared to the vertices of R shown in (15), our approach

only needs to find two of them. The initial starting point (R1)
is easy to find by searching an arbitrary maximal independent
set of ND=1

4,1 (shown in Figure 1). Moreover, we note that the
maximum flow value 1/2 indeed achieves the upper bound of
line networks with utilizing nonzero delays, as proved in [9].

V. PERFORMANCE EVALUATION

In this section, we numerically compare our algorithms to
conventional approaches, across various network settings 1:

• We evaluate Algorithm 1 on random networks;
• We evaluate Algorithm 2 on different line networks that

have also been used and evaluated in [7]–[9].
For all the experiments, we compare our algorithms with

the two-step method (i.e., first calculate the whole scheduling
rate region and then solve the MMF or MCMF problem),
which is the conventional way to find exact-optimal solutions,
although the method of calculating the scheduling region
varies. Note that Algorithm 2 can also be evaluated on
random networks, but we choose to perform experiments on
different line networks because: 1) they have been discussed
in literature [7]–[10], [26]; 2) due to the complexity of the
scheduling algorithms [7], [8], the two-step method is unable
to handle large-size networks; 3) we show that our algorithms
have significant improvements even in very simple settings.

A. Algorithm 1 on Random Networks

We first evaluate Algorithm 1 on networks of N (3 ≤ N ≤
80) nodes with random topology. As discussed in Section III,
we let the networks be acyclic. For a given number of nodes,
we randomly generate connected networks. We assume each
link has a unit capacity, and we still use the 1-hop interference
model. We study multicast case (in comparison, existing works
may only work on unicast case [1], [3], [12]). We randomly
choose 1 node as the source and 2 different nodes as the sink
nodes. We do not specify any network coding mechanisms in
particular, any network coding scheme can be directly applied
(e.g., similar to [12] we can utilize the COPE system [22]). The
main objective is to show the advantages of only calculating a
subset of the scheduling rate region, while the conventional
two-step method needs to calculate the scheduling region
by searching maximal independent sets in the link conflict
graph [1] before sovling the MMF problem.

We compare the required time to solve the MMF problem
by the two approaches. In Figure 2, the required time (in
logarithmic scale) is plotted against 3 ≤ N ≤ 80, the sizes of
the random networks. Note for each N , we randomly generate
an N -node network for 5 times, which may have different
topology. We randomly choose the source and sink nodes,

1All the implementations are based on Python, and executed on a laptop
computer with i7-8550u CPU with Python 3.7.

0 10 20 30 40 50 60 70 80
Number of Nodes of Random Networks

10−1

100

101

102

103

T
im

e
re

qu
ir

ed

Two-step algorithm

Algorithm 1

Fig. 2. The x-axis is the number of nodes in random networks. The y-axis
(in logarithmic scale) is the time (seconds) to calculate the MMF value.

and measure the average time used. Note the comparison is
between the time used by two methods to find the optimal
MMF values, and therefore the reduction in search time by
our algorithm does not sacrifice any scheduling performance.

Figure 2 shows that our algorithm consistently outperform
the two-step method, and it can be significantly faster when the
network size becomes large. When the network size is large,
the scheduling region (which is a polytope) not only becomes
hard to compute, but also leads to two difficulties: 1) the rate
vectors (the vertices of the polytope) are calculated in the form
of vectors, but to iteratively update the scheduling region, we
need to convert the set of vectors (V -representation) to a set
of inequalities (H-representation), and the conversion suffers
high complexity; 2) the termination condition of the algorithm
needs to decide whether a vector achieves an optimum, which
can also have high cost when the scheduling region is large.
Terminating in a small number of steps is important (which
is the main advantage of our algorithms), since the update of
a subset of the scheduling region is a critical bottleneck and
should be performed as little as possible.

B. Algorithm 2 on Line Networks

Next, we evaluate Algorithm 2 on various line networks
with non-negligible delays [7]–[10] to show that not only do
we outperform the conventional method based on [7], [8] for
the scheduling problem, but also that our algorithm can be sig-
nificantly faster even in simple networks. Due to the hardness
of the scheduling problem with non-negligible delays [7]–[10],
the two-step solution can only handle networks of small sizes.
We choose D = 1 for simplification. We consider three tasks:
single flow, MMF and MCMF maximizations:

1) Single flow maximization: Consider a unicast line
network under the 1-hop interference model ND=1

L,1 . The
first node is the source, and the last node is the only sink.

2) MMF problem: Consider bi-directional line networks
under the single collision domain model [10], [26], i.e.,
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Fig. 3. The x-axis is the number of links and the y-axis (in logarithmic scale) is the required time (seconds) to calculate the maximum (concurrent) multiflow
value. The left figure is for single-flow maximization in unicast line network ND=1

L,K ; the middle figure is for the MMF problem in bi-directional line networks;
the right figure is for the MCMF problem in bi-directional line networks.

each link can collide with all the other links. There are
two information flows in the network, one from node 1
to node N , and another from node N to node 1.

3) MCMF problem: We use the same bi-directional line
networks with the same interference model. For the two
flows, we require that the desired traffic rate of one flow
is half of the desired traffic rate of the other flow.

Similar to Section V-A, we compare our algorithm with
the two-step method. However, instead of enumerating the
maximal independent sets in the conflict graph, we use the
cycle-enumeration method [7], [8] to calculate the scheduling
rate region in the two-step method.

The performance evaluation is shown in Figure 3. The
running time (in logarithmic scale) is plotted against the
number of links L. The figure demonstrates that the time
required by our algorithms to achieve the optimal (concurrent)
multiflow values is significantly lower. Since the comparison
is between the time required to find the optimal MMF and
MCMF values, the reduction in search time by our algorithm
does not compromise scheduling performance. Additionally,
it is evident that due to the NP-hardness of the scheduling
problem, the required time for solving the multiflow problem
by the two-step scheme in networks with non-negligible delays
increases doubly-exponentially fast, which aligns with theoret-
ical studies in [7] and shows that the scheduling region is the
key bottleneck, and hence we can have significant gains by
only calculating a subset of the scheduling region.

For example, the algorithm in [7] needs to search 7653 rate
vectors to characterize the scheduling region of ND=1

4,1 , which
has 9 vertices as shown in (15), while we only need to find 2
of them for solving the MMF (or MCMF) problem. For ND=1

6,1

whose rate region has 57 vertices, we only need 4 of them. The
two-step method requires more than a week to calculate the
scheduling rate region of ND=1

6,1 , while Algorithm 2 can solve
the MMF problem in less than 1 second. In more complicated
settings (e.g., random networks as discussed in Section V-A),
the scheduling problem becomes even harder, which might
make our joint approach more preferable.

VI. CONCLUSION

In large-scale wireless systems, although the maximum
(concurrent) multiflow problem is extremely important for
understanding the network capability, it is NP-hard and even
computationally prohibitive to solve due to the hardness of the
scheduling problem. It can become even harder if the propa-
gation delays are considered in challenging network environ-
ments (e.g., underwater and deep-space). Most (distributed)
linear programming algorithms with low complexities either
provide approximated solutions or are designed for specific
networks under certain constraints In this paper, we jointly
solve the MMF and MCMF problems and the scheduling
problem, in a general multi-source multi-sink network with
network coding allowed and propagation delays potentially
utilized in scheduling. We provide practical algorithms that
may only need a small subset of the scheduling rate region for
the MMF and MCMF problems, making our approaches more
efficient without sacrificing solution accuracy or scheduling
performance. We prove that our algorithms output exact-
optimal solutions in a finite number of iterations, and experi-
ments show that our algorithms can be significantly faster.

VII. FUTURE WORKS

In Section IV-B, we utilize the maximum-mean-cycle al-
gorithms in solving the MMF (or MCMF) problem. We
find thatthese algorithms can also be used to calculate the
throughput (the objective in [9], [10]) or the entire scheduling
rate region (the objective in [7], [8]) as follows. The convex
hull method [35] is an algorithm for finding the vertices of
an unknown polytope P ⊆ Rn, given an oracle that can find
argmaxx∈P⟨x, a⟩ for a ∈ Rn. By using the maximum-mean-
cycle algorithm as the oracle to the convex hull method, we
can iteratively search for the vertices of the entire scheduling
rate region. This method can be more efficient than the cycle-
enumeration method in (MT , ET ) [7], since we do not need
to enumerate all the simple cycles in (MT , ET ). Detailed im-
plementations of such algorithms for the scheduling problem
is left for future study.
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