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Abstract—In this paper, we introduce a new class of polar
codes, called weighted polar codes. Recently, it has been observed
that by attaching weights to parity-check bits of error-correcting
channel codes (instead of fixing parity-check bits to zeros), the
error rate can be reduced for channels with state information
and/or cost constraints. We extend the weighted construction
to polar codes, a class of codes that have efficient encoding
and decoding algorithms and are provably capacity-achieving.
Experiment results show that for channels with state informa-
tion (Gelfand-Pinsker problem), the weighted polar codes have
smaller error rates compared to the nested polar codes in short
blocklength regime.

Index Terms—Information theory, finite blocklength, Gelfand-
Pinsker problem, channels with state, polar codes.

I. INTRODUCTION

Error-correcting codes are used in channel coding to cor-
rect errors during information transmission. Conventionally,
the codebook of an error-correcting code, which consists of
sequences that may be chosen as the channel inputs, is a
fixed set, and whether a sequence is a codeword is a binary
choice. However, it has been shown in [1]–[3] that by attaching
weights (probabilities) to the codewords which correspond
to the likelihood of the codewords to be chosen, we can
have advantages in various settings, e.g., smaller error rates
in channels with state information available to the encoder
noncausally, i.e., the Gelfand-Pinsker problem [4], [5]. By this
construction, the codebook is a “fuzzy set” instead, called a
weighted codebook in [2].

However, the weighted code in [1], [2] is unstructured, and
therefore no efficient coding algorithms could be provided.
In [3], structured weighted codes based on linear codes are
proposed. The performance is consistently better than the
traditional nested linear codes for channels with state [6],
and the codes were proved to be capacity-achieving for any
(symmetric or asymmetric) channel with state. While the
construction in [3] can be applied on sparse parity-check
matrices, the design of efficient coding algorithms does not
appear to be straightforward.

In this paper, we extend the weighted construction to the
polar codes. Compared with the nested polar codes [7], [8]
for the channels with state, which divide the bits into three
groups, namely information bits (that are set to be the bits in
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the message), fixed bits (that are fixed to zero) and flexible
bits (that can adapt to the channel state), the proposed codes,
called weighted polar codes, blur the boundary between fixed
bits and flexible bits, by treating them as a single group (the
weighted bits), and attaching a weight to each of these bits
representing the “degree of flexibility” of the bit. The proposed
codes utilize mutual information to choose information bits
and assign weights to the weighted bits. Experiment results
show that the proposed codes can attain lower block error rates
compared to the nested polar codes in short blocklength regime
(e.g. ultra-small packet lengths N = 512 to N = 2048),
and therefore the code is practical for low-latency required
communication settings.

A. Coding with Side or State Information

For the channels with state information (Gelfand-Pinsker)
setting [4], [5], [9], there is a state sequence that indicates
the channel statistics, and varies throughout the information
transmission. The state sequence is available to the encoder
non-causally, but is unknown to the decoder. This setting
was originally studied on memory with stuck-at faults [9]. It
was then generalized to the discrete memoryless channel with
discrete memoryless state in [4], [5]. In [10] the capacity of
the Gaussian channel with additive Gaussian state was studied,
which is called writing on dirty paper. The finite blocklength
cases were studied in [2], [11]–[13].

It was shown in [6], [14] that the channel coding with
state information has a duality with the source coding with
decoder side information, i.e., the Wyner-Ziv problem [15].
The construction of encoders for the Wyner-Ziv problem was
studied in [16], and the rate loss was discussed in [17]. The
Wyner-Ziv problem with multiple sources was discussed in
[18].

It was shown in [19] that nested code constructions, i.e.,
a collection of good source codes are nested inside a good
channel code (or vice versa) can achieve the optimal rates
of the Gelfand-Pinsker problem and the Wyner-Ziv problem.
However, the random constructions of nested codes are im-
practical. Nested linear code constructions were given in [6]
for the information embedding problem [20]. The sparse
graphical codes can be used to generate practical nested linear
codes in [21].

Weighted codebook constructions [1], [2] were proved to
achieve the optimal rates for the Gelfand-Pinsker problem and
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Fig. 1. Block diagram representation of a channel with state information.

the Wyner-Ziv problem, and attain the best known second-
order asymptotic results. In [3], it was shown that a linear
weighted code construction can achieve the optimal rates for
the Gelfand-Pinsker problem and the Wyner-Ziv problem.

B. Polar Codes

Polar codes [22] are the first practical codes that can be
proved to achieve the capacity of a wide range of channels.
The construction is based on channel polarization, which
refers to the fact that when the blocklength increases, the
fraction of “reliable” channels is approaching the channel
capacity. The speed of polarization was discussed in [23].
Originally, the polar codes were constructed by calculating the
Bhattacharyya parameters and ranking sub-channels based on
them. Various improvements on the code constructions were
proposed, for example, the polar weight construction [24] and
the Gaussian approximation construction [25]. A summary of
polar codes construction methods can be found in [26]. An
important improvement on the efficiency of polar codes is the
list decoding of polar codes, which keeps a list of possible
codewords during the successive cancellation decoding [27].

In [7], it was shown that polar codes are also optimal for
source coding problem, and therefore are optimal for settings
combining both channel and source coding with or without
side information, e.g., the Gelfand-Pinsker problem and the
Wyner-Ziv problem. They used a nested construction of polar
codes to achieve the capacity. In [8], list decoding with cyclic
redundancy check aided successive cancellation coding was
used for the Gelfand-Pinsker problem.

In [28], the information bits play roles like frozen bits: the
so-called half-frozen bits are placed at where errors hardly
occur within the frozen bits and also where errors are easy
to occur within the information bits. Soft-output decoding of
polar codes was proposed in [29]. Moreover, polar coding for
secure Wyner-Ziv problem was studied in [30].

The remainder of the paper is organized as follows. After
introducing the problem setting in Sec. II, we review the polar
codes and nested polar codes in Sec. III. We then show the
weighted polar codes in Sec. IV, and the experiments will be
discussed in Sec. V.

II. PROBLEM FORMULATION

We review the Gelfand-Pinsker problem [4] as follows.
Suppose there is a state sequence available noncausally at
the encoder, denoted as S = [S1, . . . , Sn], Si ∈ S , such that
S1, . . . , Sn

iid∼ PS . The encoder observes S and the message

m, and encodes them to the codeword X ∈ Fn
2 . The input is

subject to a cost constraint, namely E[
∑n

i=1 c(Si, Xi)] ≤ nD
where c : S × F2 → [0,∞) is the cost function. The code-
word is then sent through a channel PY |S,X(y|s, x) which is
memoryless. The decoder observes the output of the channel,
denoted as Y = [Y1, . . . , Yn], and decodes it to m̂. The
problem is illustrated in Figure 1.

III. POLAR CODES AND NESTED POLAR CODES

Polar codes were invented in [22] for channel coding and
extended to source coding [7]. They are also proved to be
optimal for the Gelfand-Pinsker problem and the Wyner-Ziv
problem by using a nested construction [7]. We briefly review
the polar codes and the nested polar codes.

A. Polar Codes for Channel and Source Coding

Suppose W (y|x) is a discrete memoryless channel, where
x ∈ {0, 1} and y ∈ Y . The Bhattacharyya parameter of W
is defined as Z(W ) =

∑
y∈Y

√
W (y|0)W (y|1). We use an

upper case bold letter U and a lower case bold letter u to
denote a random vector and its realization, respectively. Unless
otherwise specified, we assume a vector has length N = 2n,
where n ∈ N+. We use uj

i to denote the random vector uj
i =

[ui, ui+1, . . . , uj ] for i < j. Write uF for the vector consisting
of the entries of u with indices in F , without changing the
order within them.

Given G2 =

[
1 0
1 1

]
, we apply the transform G⊗n

2 (the

nth Kronecker product of G2) to the vector u, and send the
entries of uG⊗n

2 through independent copies of W . When
N increases, the channels polarize [22] and become either
noiseless or purely noisy. There are I(W ) fraction of the
channels {W (i)

N } become noiseless with Z(W
(i)
N ) close to 0,

which are used to transmit messages with a rate equal to the
channel capacity. The set of indices of these sub-channels is
called the information set.

Suppose U is uniform over {0, 1}N , X = UG⊗n
2 is the

channel input and Y is the output. The channel from U to Y
is

PY|U(y|u) :=
N−1∏

i=0

W (yi|(uG⊗n
2 )i).

Moreover, W (i)
N : {0, 1} → {0, 1}i is the channel with input

ui and output (y,ui−1
0 ), where the transition probabilities are

W
(i)
N (y,ui−1

0 |ui) := P (y,ui−1
0 |ui).

The successively cancellation (SC) coding is shown in
Algorithm 1. Given a frozen set F , the bits are decoded from
bit 0 to bit N − 1, where the likelihood is calculated based
on W

(i)
N (y,ui−1

0 |ui). If i ∈ F , we set ûi to a frozen value,
which is usually 0; otherwise, we calculate

L
(i)
N (y, ûi−1

0 ) =
W

(i)
N (y, ûi−1

0 |ui = 0)

W
(i)
N (y, ûi−1

0 |ui = 1)
, (1)

and make a decision ûi = 0 if L(i)
N > 1 and ûi = 1 if L(i)

N ≤ 1.



The SC encoder for source coding performs similar coding
steps [7]. A polar code C(F ) is defined by C(F ) := {x =
uG⊗n

2 }, where F ⊆ {0, . . . , N − 1}.

Algorithm 1 High-Level Description of the SC Coding [22]
1: Input: the received vector y
2: Output: û
3: procedure DECODER
4: for i = 1, . . . , N − 1 do
5: calculate W

(i)
N (y, ûi−1

0 |0),W (i)
N (y, ûi−1

0 |1)
6: if ui is frozen then
7: set ûi to the frozen value
8: else
9: if W

(i)
N (y,ûi−1

0 |0)
W

(i)
N (y,ûi−1

0 |1)
> 1 then

10: set ûi = 0
11: else
12: set ûi = 1

B. Nested Polar Codes

The nested polar codes [7] were proposed to solve problems
including both channel and source coding, e.g., the channels
with state. Fix 0 < p < D < 1/2, we construct two polar
codes: Cc and Cs based on two sets Fc and Fs, respectively:

Fs = {i : Z(i)
N (D) ≥ 1− (δ/N)2},

Fc = {i : Z(i)
N (p) ≥ δ/N},

and Z
(i)
N (D), Z(i)

N (p) are the Bhattacharyya parameters of the
i-th sub-channel after the polarization of BSC(D) and BSC(p),
respectively. The coding scheme is as follows.

The bits are divided into three groups: the information bits
Fs\Fc, the fixed bits Fc ∩ Fs, and the flexible bits F ∁

s ∩ F ∁
c .

There are also bits not in these three groups, called the
retransmission bits Fc\Fs, though it has been proved that the
number of such bits vanishes asymptotically [8], and can be
retransmitted without affecting the channel rate [7]. Therefore
we can assume Fc ⊆ Fs. The source polar code Cs(Fs)
first sets the fixed bits to zero, i.e., uFc∩Fs = 0, and the
information bits to m, i.e., uFs\Fc

= m. Then the encoder
observes the state sequence s and obtains s′ ∈ Cs(Fs) by SC
encoding, while being able to choose the values of the flexible
bits according to s. The encoder transmits x = s⊕ s′ through
BSC(p), and the cost constraint is c(x) ≤ D. The decoder
receives y = x⊕ s⊕ z = s′ ⊕ z where z is the noise vector,
and decode ûF c

m
using the SC decoding in Algorithm 1.

IV. WEIGHTED POLAR CODES

In this section, we design a class of codes for channels
with state, called weighted polar codes. For channels with
state, the rate I(X;Y ) − I(X;S) is achievable due to the
Gelfand-Pinsker theorem [4], [5]. This motivates us to design
the weighted polar codes by measuring the mutual information.
Suppose (Xi, Yi, Si) ∼ PX,Y,S i.i.d. for i = 1, . . . , N .

Consider

n(I(X;Y )− I(X;S))

= I(Xn−1
0 ;y)− I(Xn−1

0 ;Sn−1
0 )

=

n−1∑

i=0

(
I(Xi;Yi|Xi−1

0 )− I(Xi;Si|Xi−1
0 )

)
. (2)

Therefore, to design a code that can achieve the rate I(X;Y )−
I(X;S) we define

αi := I(Xi;Yi|Xi−1
0 ),

βi := I(Xi;Si|Xi−1
0 ),

which stand for the mutual information between channel
input and output and the mutual information between channel
input and the state, respectively. Because of channel polariza-
tion [22], both αi and βi polarize to the values 0 and 1, and
hence the values of αi − βi will polarize to three numbers:
−1, 0 or 1.

We will use such a polarization to design the weighted polar
codes. Before that, we first illustrate the nested polar codes in
the context of αi and βi. For the nested polar codes, the bits
are divided to four groups:

• The information bits Fs\Fc, which are the bits with
αi ≈ 1 and βi ≈ 0. According to (2), these bits
correspond to the sub-channels which contribute the most
to the capacity of the channel with state, and hence they
should be used to transmit the message.

• The fixed bits Fc ∩ Fs, which are the bits with αi ≈ 0
and βi ≈ 0. These bits are fixed to zero in the nested
polar codes.

• The flexible bits F ∁
s ∩F ∁

c , which are the bits with αi ≈ 1
and βi ≈ 1. The encoder is free to choose these bits
according to the state sequence.

• The retransmission bits Fc\Fs, which are the bits with
αi ≈ 0 and βi ≈ 1. The number of such bits vanishes
asymptotically [8].

In our coding scheme, instead of dividing the bits into four
groups (or three groups ignoring the retransmission bits), we
only divide the bits into two groups: those with αi − βi ≈ 1
which contribute to the capacity (2), and those with αi−βi ≈ 0
which do not contribute. We now describe these two groups
in detail.

• The information bits are the bits with αi − βi ≈ 1,
implying αi ≈ 1 and βi ≈ 0. These bits correspond
to the sub-channels which contribute to the capacity. To
transmit a message of k bits, we choose the k bits with the
largest αi−βi to be the message bits. Intuitively, they are
similar to the information bits Fs\Fc in the nested polar
codes, though selecting the information bits according to
αi − βi would result in slightly different choices.

• The weighted bits are the bits with αi − βi ≈ 0.
This covers both cases (αi, βi) ≈ (0, 0) (fixed bits
in nested polar codes) and (αi, βi) ≈ (1, 1) (flexible
bits in nested polar codes). According to (2), these bits
correspond to the sub-channels which does not contribute



to the capacity. Since both fixed bits and flexible bits are
“unused”, it is unnecessary to have a hard partition rule
between them. Instead, we attach a weight qi to every
weighted bit, which represents how flexible the bit is.

Note that αi − βi ≈ −1 is rare for the same reason that
retransmission bits are rare [8], and no bit with αi −βi ≈ −1
has been observed throughout our experiments.

In practice, the quantities αi and βi are approximated by the
lower bound in terms of the Bhattacharyya parameter in [22,
Proposition 1]:

I(W ) ≥ log
2

1 + Z(W )
.

An alternative is to use the upper bound estimate I(W ) ≤√
1− Z(W )2, though the lower bound estimate is observed

in experiments to give better performance.
We then discuss the method of attaching weights. The

weight qi of the i-th sub-channel corresponds to the prior
probability of the bit being 1. If qi = 0, then the bit will
be frozen to 1. If qi = 1/2, there will be no prior preference
to either 0 or 1, and the bit will behave as a flexible bit that the
encoder can choose depending on the state sequence. During
the weighted SC coding, we make a decision ûi = 0 if

L
(i)
N (u, ûi−1

0 ) >
qi

1− qi
.

Compared to Algorithm 1, a weight 1−qi
qi

is attached on the
likelihood (1). The strategy is to assign larger qi to the bits
that depend more on the state sequence. Therefore, we let the
weight sequence being an increasing function of βi. If βi ≈ 1,
we take qi ≈ 0.5, i.e., high flexibility. If βi is small, we take
a small qi so that it is more biased. We want qi to increase
quickly to be close to 0.5 when βi is small, and then increases
slowly until βi = 1. Therefore, we take

qi =
1− (1− βi)

b

2
(3)

for i = 1, . . . , N − k, where b > 1 is a parameter.
Given input x, s and q, the encoder and decoder perform

weighted successively cancellation coding by Algorithm 2. We
can see that the complexity of encoding or decoding is still
O(N log(N)).

In summary, the advantages of weighted polar codes over
the nested polar codes are as follows.

1) Compared with the nested polar codes, we treat fixed
bits and flexible bits in a uniform manner, by attaching
a degree of flexibility to each bit.

2) The encoder is flexible to trade-off between choosing
a high-weight sequence, which has higher likelihood of
being chosen by the decoder, and choosing a low-weight
sequence, which may be closer to the state sequence.
This explains the performance gain of our weighted
code construction for channels with states, and possibly
Wyner-Ziv problem and asymmetric channels [3].

3) Experiments show that in short blocklength regime,
e.g., 512 ≤ N ≤ 2048, the weighted polar codes
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Fig. 2. The plot of αi and βi for the binary-Hamming information embedding
setting in Section V, where D = 0.3, p = 0.05, with blocklength N = 256
and message length 100. The red points are the information bits, and others
are the weighted bits.

Algorithm 2 High-Level Description of Weighted SC Coding
1: Input: u, message m, information set Fm. In encoding,

u = s; in decoding, u = y. A weight sequence q.
2: Output: a decoded codeword û.
3: procedure ENCODER AND DECODER
4: for i = 1, . . . , N − 1 do
5: calculate W (i)

N (uN−1
0 , ûi−1

0 |0),W (i)
N (uN−1

0 , ûi−1
0 |1)

6: if Encoding then
7: if i ∈ Fm then
8: set ûi = mi

9: else
10: if W

(i)
N (uN−1

0 ,ûi−1
0 |0)

W
(i)
N (uN−1

0 ,ûi−1
0 |1)

> qi
1−qi

then
11: set ûi = 0
12: else
13: set ûi = 1

14: if Decoding then
15: for i ∈ Fm do
16: set qi = 1/2

17: if W
(i)
N (uN−1

0 ,ûi−1
0 |0)

W
(i)
N (uN−1

0 ,ûi−1
0 |1)

> qi
1−qi

then
18: set ûi = 0
19: else
20: set ûi = 1

achieve smaller costs and block error rates, which will
be discussed in Section V.

We remark that as N → ∞, αi and βi will polarize to 0
or 1, and hence qi will polarize to 0 or 1/2, and the weighted
polar codes will be approximately the same as the nested
polar codes. Intuitively, this means the weighted polar codes
should also be capacity-achieving like the nested polar codes.
A rigorous proof is left for future study. For N that is not
large, there will be a larger portion of weighted bits with qi
not close to 0 or 1/2, which can lead to an improvement in the



block error rate as measured in the experiments in Section V.

V. EXPERIMENTS

We consider the binary-Hamming information embedding
setting [6]. Consider a state sequence S with entries Si ∼
Bern(1/2) and the channel is a binary symmetric chan-
nel (BSC) with crossover probability p. The transmission
is required to satisfy an expected cost constraint E[|{i ∈
{1, . . . , n} : Xi ̸= Si}|] ̸= nD for 0 < D < 1, similar to [7],
[8]. The D is called the maximum average cost (or distortion)
per symbol. While satisfying the average cost constraint, we
want to achieve the optimal tradeoff between the code rate
R = k/N and the error probability P(M ̸= M̂). It has
been shown in [6] that the capacity C of this problem is
C = E[g(D)] such that

g(D) =

{
0, if 0 ≤ D < p,

H(D)−H(p), if p ≤ D ≤ 1/2,

and E[g(D)] is the upper concave envelope of g(D).
We compare the weighted polar codes with attaching

weights by (3) and choosing the parameter b = 15, to the
nested polar code [7], [8] for the the cases with blocklength
N from 512 to 2048, crossover probability p = 0.05.

Figure 3 shows the tradeoff between the cost and the block
error rate measured in the experiments. In the plots, for each
data point, we perform 2 × 104 trials to compute the block
error rate and the average cost. We observe that the weighted
polar codes (WPC) outperform the nested polar codes (NPC)
almost consistently. When D is not too close to 1/2, there are
many weighted bits and we have performance improvement.
However, when D is close to 1/2, there might be only one
or two weighted bits, and the performance is similar with the
nested polar codes. We compare them on high information rate
ranges (i.e., K/N is large), since when the rate is low both
of them have small and close error probabilities.

We remark that having performance improvement in short
blocklength (e.g. from N = 512 to N = 2048) cases show
that the weighted polar codes can be applied to practical delay-
constrained communication settings. While the performance
improvement appears not huge, it would be unrealistic to
expect a huge improvement by an order since the nested polar
codes are already capacity-achieving.

VI. CONCLUSION

In this paper, we propose a class of polar codes, called the
weighted polar codes, for the channels with state information.
Each parity check bit is attached by a weight, which enables
us to deal with the fixed bits and flexible bits in the nested
polar codes in a uniform manner. Experiment results show
that we have smaller block error rates when the blocklength is
short, and therefore the code is practical for delay-constrained
communication settings. Weighted polar code constructions for
other settings, e.g., source coding with side information and
asymmetric channels, are left for future research. Moreover,
more general cases (compared with the binary symmetric
channel in this paper) can also be studied in the future.
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Fig. 3. Comparison of the block error rate (log scale) of weighted polar
codes (WPC) and nested polar codes (NPC) on blocklength from N = 512
to N = 2048. The crossover probability is p = 0.05 and we perform 2×104

trials for each data point. Weight sequence chooses b = 15 in (3).
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