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Abstract—We present a one-shot information-theoretic analysis
of the information hiding problem, which has a wide range of
applications including watermarking, fingerprinting, steganogra-
phy and copyright protection. The problem can be viewed as a
game: one party includes an information hider and a decoder,
where the former embeds a message into a host data source
and introduces some tolerable distortion, and the latter wishes
to reconstruct the message; another party is an attacker that is
modeled as a noisy channel which aims at removing the hidden
information. We derive a one-shot achievability result using the
Poisson matching lemma. Unlike previous asymptotic results, our
result applies to any distribution of the host data, and any class
of attack channels (not necessarily memoryless or ergodic).

Index Terms—Information hiding, one-shot achievability, finite
blocklength, network information theory, watermarking.

I. INTRODUCTION

Information hiding has been a widely studied topic in the
past decades, due to its wide range of applications including
watermarking, fingerprinting, data embedding, steganography
and copyright protection. It borrows techniques from various
areas, e.g., wireless communication, signal processing, cryp-
tography and game theory [1]–[5]. The information hiding
problem can be formulated as a communication system [1],
where the goal is to characterize the maximum rate of reliable
transmissions under attacks. More specifically, a message M
is expected to be reliably transmitted to a decoder. To protect
M from attacks during the transmission, it is embedded into
a host source S, and X is the encoded signal. Upon receiving
Y from the attack channel A(Y |X), the decoder decodes M .

Two main classes of applications of information hiding
are watermarking and fingerprinting [2]. In watermarking, the
message usually contains personal identification and the goal
is usually to protect copyright. The message is expected to
be embedded in the host data, but the secrecy is not always
required [3], [4] and sometimes the host data is also fully avail-
able at the decoder [2], [6], [7]. In fingerprinting, the message
is a fingerprint inside the host data that can identify a unique
user, and collusion between users is usually considered [2],
[8]. In [1], a comprehensive study on the fundamental limits
of asymptotic information hiding systems has been addressed,
and the hiding capacity is proved by borrowing techniques
from the celebrated Gelfand-Pinsker coding [9], [10].

However, the hiding capacity provided by [1] is the asymp-
totic capacity, i.e., the law of large number is utilized while
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assuming that the signal has a blocklength approaching infin-
ity. In the past decade, since packets have bounded lengths
in practice, finite blocklength information theory has been
widely studied [11]–[13]. More generally, we are interested in
the one-shot achievability results, i.e., the channel is arbitrary
and used only once. Various one-shot coding techniques have
been proposed [13]–[20], yielding one-shot bounds that imply
existing (first-order and second-order) asymptotic results when
applied to memoryless channels.

In this paper, we provide one-shot achievability results of
the information hiding problem. We utilize the Poisson match-
ing lemma [19], which is rooted in the Poisson functional
representation [21]. Compared with the asymptotic results, [1]
has assumptions that the attack channels are memoryless or
blockwise-memoryless and the decoder has complete knowl-
edge about the attacker, which are dropped in this paper; [4]
assumes the side information K is a shared key of unlimited
size that is independent of S,M and can be chosen as a part of
the coding scheme, while we assume the given K is correlated
with S and cannot be changed (as in [1]).

II. RELATED LITERATURE

We briefly review three lines of research: the information
hiding problem, one-shot information theory, and applications
on copyright protection in modern scenarios.

A. Information Hiding, Watermarking and Fingerprinting

The information hiding problem has been discussed for
a long time, due to its wide range of applications on wa-
termarking, fingerprinting, steganography, data embedding,
audio/image/video processing and copyright protection [1]–
[5]. In [1], a guiding theory for the fundamental information-
theoretic limits of information hiding has been proposed. The
information hiding system is modeled as a communication
problem, where a message is to be embedded and hidden in
a host data (by introducing some tolerable distortion), and
the overall encoded data (which is usually similar to host
data) will be under data processing attacks (by introducing
another level of distortion) that attempt to remove or degrade
the message. The goal of the encoder-decoder party is to let
the decoder correctly decodes the hidden message. Though the
problem is related to cryptography, the secrecy of the message
is not always required, e.g., in watermarking [3], [4] where the
message is the personal identification for copyright protection.

Public watermarking [4] shares a similar setting with [1]
that the host data is only available at the encoder. In compari-



son, the private watermarking [3], [6] discusses the case where
the host data is available at both the encoder and the decoder,
and the capacity and error exponents are investigated in [3]. [1]
has a questionable assumption that the attack scheme is always
be learned by the decoder, which is dropped in [3], [4] (and is
also the case in this paper). In [5], the capacity of a Gaussian
watermarking game has been studied, and cases where the
public and private games have the same capacity are discussed
(which is not always true in general). Digital fingerprinting
is another important application, which desires to embed a
fingerprint into the host data that can uniquely identify the
users for copyright protection or tracing illegal uses of the
data. It is challenging due to the possible collusion between
users [8], and the case of blockwise memoryless attacks has
been discussed in [1]. See [22]–[26] for other related literature.

B. One-shot Information Theory

For all the literature on the information hiding problem
above, the information-theoretic limits are investigated in
the asymptotic regime, where the law of large numbers is
employed to derive the asymptotic behavior of channels in
the large blocklength limit. In the past decade, due to the
fact that packets have bounded lengths in practice, which
can even be very short in machine-type communications [27],
finite blocklength information theory [11]–[13] and one-shot
information theory [12]–[20] have been studied, both of which
intend to provide nonasymptotic results of channels, which
are expected to imply existing (first-order and second-order)
asymptotic results. In the one-shot case, we assume the block-
length is 1, i.e., we consider a single use of the channel, with
no assumption on memorylessness or ergodicity.

In this paper, we derive one-shot achievability for the
information hiding problem by utilizing the Poisson matching
lemma [19], which in turn is based on the Poisson functional
representation [21]. It provides a unified framework for one-
shot achievability results, which can improve upon previously
known one-shot bounds in various settings with simpler analy-
ses [19]. See Section III for details. Recently a refined version
of the Poisson matching lemma has been used to provide one-
shot bounds for (multi-hop) general noisy networks [20].

C. Information Hiding in Machine Learning

Information hiding systems for modern scenarios have re-
cently attracted considerable attention. In the past decade,
machine learning techniques have gained great success in
a large number of areas. Software based on the generative
models, e.g., Midjourney [28], Stable Diffusion [29] or Chat-
GPT [30] can produce contents as realistic as the original
works by human creators used in training. However, the
copyright issue becomes controversial since some generative
models are possibly trained on publicly available data with-
out obtaining permission from the authors. To protect the
intellectual property of human creators, techniques to embed
information (e.g., watermarks that are hard to be removed)
into the original works have been proposed [31], [32]. Some
AI-based algorithms for information hiding, watermarking and

fingerprinting have also been proposed [33]–[35]. To design
practical algorithms, it is crucial to understand the fundamental
limits of any information hiding system, without impractical
assumptions in such learning-based system designs, e.g., mem-
orylessness, ergodicity, or the decoder being informed of the
attack schemes. This also motivates us to provide a one-shot
information-theoretic study on the information hiding problem.

Notations

We assume logarithm and entropy are to the base 2. For
a statement S, we use 1{S} to denote its indicator, i.e.,
1{S} = 1 if S holds, and otherwise 1{S} = 0. We use
δa to denote the degenerate distribution P{X = a} = 1.
For two random variables X,Y , the information density is
defined as ιX;Y (x; y) = log((dPX|Y (·|y)/dPX)(x)), where
dPX|Y (·|y)/dPX denotes the Radon-Nikodym derivative. We
sometimes omit the subscript and write ι(x; y) if the ran-
dom variables are clear from the context. The total variation
(TV) distance between two distributions P,Q over X is
∥P −Q∥TV := supA⊆X measurable |P (A)−Q(A)|.

III. POISSON MATCHING LEMMA

The techniques in [1], [4] are not suitable for the one-
shot setting (see Section IV-B for details). In this paper,
we utilize the Poisson matching lemma [19] to prove one-
shot achievabilities of the information hiding game, which
is rooted in the Poisson functional representation [21] that
is reviewed as follows. Fix a probability distribution P̄ over
U . Let (Ti)i=1,2,... be a Poisson process with rate 1, i.e.,
T1, T2 − T1, T3 − T2

iid∼ Exp(1). Let (Ūi)i be an independent
i.i.d. sequence with distribution P̄ . This “marked” Poisson
process (Ūi, Ti)i supports a “query operation” given by the
Poisson functional representation, where one can input a dis-
tribution P over U , and obtain one sample ŨP with distribution
P . The Poisson functional representation is given by

ŨP := ŪK , where K := argmin
i

Ti ·
(dP
dP̄

(Ūi)
)−1

.

The way this Poisson process is used in communication
settings (e.g., in [19], [20]) is that the encoder would query
the process using the prior distribution of the signal to obtain
the signal to be sent, and the decoder would query using the
posterior distribution of the signal given the noisy observation
to obtain the message. There is no error in the communication
if the two queries return the same sample. The probability of
error can be bounded by the Poisson matching lemma in [19].

Lemma 1 (Poisson matching lemma [19]). Consider two
distributions P,Q ≪ P̄ . Almost surely, we have

P
(
ŨQ ̸= ŨP

∣∣ ŨP

)
≤ 1−

(
1 +

dP

dQ
(ŨP )

)−1

.

IV. ONE-SHOT INFORMATION HIDING GAME

In this section, we formulate the one-shot information hiding
problem and provide the main results.



A. Problem Formulation

The one-shot information hiding game is described in the
figure above. A host source S ∈ S and a side information
source K ∈ K (available to both the encoder and the decoder)
are distributed according to the joint distribution PS,K . A
message M is uniformly chosen from the set [1 : L], where L
is the message size. An encoder produces X as a function of
S,K,M and sends X through an attack channel AY |X . The
attack channel AY |X is chosen by an attacker, who attempts
to destroy the embedded message under some distortion con-
straint, which will be discussed later. The decoder observes
Y,K and desires to decode M correctly.

The roles of random variables are briefly described below.
• Message M : A message that is desired to be transmitted

reliably to the decoder through a noisy channel (attacks).
To protect M from the attacker, the encoder hides M into
a host data source S to produce X .

• Host data source S: A host data set from text, image or
video, which is allowed to suffer some tolerable level of
distortions (from both the encoder and the attacker).

• Side information K: Common randomness available at
both the encoder and the decoder, but not the attacker.
It reveals information about S to the decoder, where the
dependency are from the joint distribution PS,K .

Given the random variables, the information hiding problem
can be viewed as a game between two parties: the first party
consists of the encoder (information hider) and the decoder,
who are cooperatively transmitting the message M ; the second
party is an attacker, who is trying to destroy or degrade the
hidden message M in S so that the decoder cannot correctly
decode. Their roles and assumptions are elaborated as follows.

• Encoder: The goal of the encoder is to hide the message
M into S. Given S,K,M , the encoder outputs X =
f(S,K,M), where f : S×K×[1 : L] → X . The encoder
wants X to be close to S, in the sense that the distortion
d1(S,X) is small, where d1 : S × X → [0,∞) is a
distortion measure. We want d1(S,X) ≤ D1 with high
probability. This will be elaborated later.

• Attacker: The attacker is formulated as a noisy channel
with input X and output Y , called the attack channel
AY |X . It performs data processing attacks on the received
X and produces Y , a corrupted version of X . Its objective
is to (partially) remove or degrade the message M so that
the decoder cannot correctly find the original message M
from Y . We assume the attack channel must be chosen
from a class of channels A, for example, the class of
channels satisfying some distortion constraint between X
and Y , or the class of memoryless channels in case X
and Y are sequences. Different attack strategies could be
performed, e.g., deterministic attacks that X is mapped

by a deterministic function, or a randomized strategy. We
assume the attacker has knowledge of the distributions
(but not the values) of S,M,K, and also knows the code
that the encoder-decoder team uses.

• Decoder ϕ: Upon observing the attacker’s output Y , the
decoder wishes to recover the message M . It outputs
M̂ = ϕ(K,Y ), where ϕ : K × Y → [1 : L]. The decoder
is uninformed of the attacker’s strategy. We require the
encoder-decoder team’s worst case failure probability

Pe := sup
AY |X∈A

P
(
d1(S,X) > D1 OR M ̸= M̂

)
(1)

to be small, where we assume (S,K,M) ∼ PS,K ×
Unif[1 : L], X = f(S,K,M), Y |X ∼ AY |X and
M̂ = ϕ(K,Y ) in the probability.1

B. Discussions

In [1], it is assumed that the attack channel must be
memoryless, and hence the decoder can obtain full knowledge
about the attack channel, justified by the large blocklength of
signals. In this paper, we drop this assumption, and consider
a one-shot setting where the set of possible attack channels
A can be any set of channels. Also, we do not assume that
the decoder knows the attack channel, which is unrealistic in
the one-shot setting where the attacker can be arbitrary. In [4],
the memoryless assumption is also dropped, and an asymptotic
hiding capacity expressed as the limit of a sequence of single-
letter expressions has been derived using constant composition
codes. The key difference between [4] and our setting (and also
[1]) is that the side information K in [4] is a shared key of
unlimited size independent of M,S that can be chosen as a
part of the coding scheme, whereas in our paper and [1] the
K is a given side information that may be correlated with S
(where the dependence is from the joint distribution PS,K),
and cannot be changed. In some watermarking problems [7],
[26] certain components can be further constrained, e.g., there
may exist a mapping from the message M to a codeword
V (M) which is independent of S, and then composite data
are obtained by a mapping from S, K and V (M).

The information hiding can be regarded as a variant of
Gelfand-Pinsker coding for channels with side information at
the encoder [9], [10], where the channel is fixed and not chosen
by the attacker, and there is no K shared between the encoder
and the decoder. Since the encoder and the decoder have to
account for all possible attack channels, this can be regarded
as a combination of Gelfand-Pinsker coding and compound
channel [36]–[38]. The analyses in [1], [4] utilize techniques
such as random binning, joint typicality decoding and con-
stant composition codes, which are also commonly utilized
in the asymptotic analyses of Gelfand-Pinsker coding [9],
[39]. These techniques may not be suitable for our one-shot

1Note that [1] imposes a constraint on the expected distortion E[d1(S,X)],
which is reasonable in the context of [1] because the memoryless assumption
and the law of large numbers ensure that the actual distortion is close to the
expected distortion. Since we are considering a one-shot setting, we consider
d1(S,X) > D1 a failure event and bound the probability of failure instead.



setting. Strong typicality and constant composition codes are
inapplicable when the blocklength is 1. While random binning
can be applied to one-shot Gelfand-Pinsker coding [14]–[16],
it produces weaker results compared to the Poisson matching
lemma [19]. To obtain tight one-shot bounds for information
hiding, we utilize the Poisson matching lemma instead.

V. ONE-SHOT ACHIEVABILITY OF INFORMATION HIDING

Since the encoder-decoder team has to account for all
possible attack channels in A, it suffers a penalty depending on
the “size” of A. Though the cardinality of A is often infinite,
we can often find a finite subset Ã such that every attack
channel A ∈ A is close enough to some Ã ∈ Ã. This notion
of size is captured by the ϵ-covering number defined below.
Similar covering arguments have been used in [1], [36].

Definition 1. Given a set of channels A from X to Y , its
ϵ-covering number is defined as

Nϵ(A) := min
{
|Ã| : Ã ⊆ A,

sup
A∈A

min
Ã∈Ã

sup
x∈X

∥AY |X(·|x)− ÃY |X(·|x)∥TV ≤ ϵ
}
,

where ∥AY |X(·|x)− ÃY |X(·|x)∥TV ∈ [0, 1] denotes the total
variation distance between AY |X(·|x) (the distribution of Y if
X = x and Y follows AY |X ) and ÃY |X(·|x).

We now present the main result, which is a one-shot
achievability result with a bound on the error probability in
terms of Nϵ(A) and information density terms.

Theorem 2. Fix any PU,X|S,K and channel ÂY |X . Then for
any ϵ ≥ 0, there exists an information hiding scheme satisfying

Pe ≤ Nϵ(A) sup
AY |X∈A

EY |X∼AY |X

[
1− 1{d1(S,X) ≤ D1}

·
(
1 + L2−ι̂(U ;Y |K)+ι(U ;S|K)

)−1
]
+ ϵ,

where we assume (S,K,U,X, Y ) ∼ PS,KPU,X|S,KAY |X
in the expectation, and ι̂(U ;Y |K) is the information den-
sity computed by the joint distribution PS,KPU,X|S,KÂY |X
(instead of AY |X ), assuming that ι(U ;S|K), ι̂(U ;Y |K) are
almost surely finite for every AY |X ∈ A.

Proof. The idea is that we design the decoder assuming that
the attack channel is fixed to ÂY |X , and hope that this decoder
works for every attack channel AY |X . Let C := ((Ūi, M̄i), Ti)i

where (Ti)i is a Poisson process, Ūi
iid∼ PU , and M̄i

iid∼ PM

(where PM = Unif[1 : L]). This will act as a random
codebook shared between the encoder and the decoder (we
will fix the codebook later). The encoder observes the mes-
sage M ∼ PM , the host signal S and side information
K, by the Poisson functional representation [19], [21] on
the distribution PU |S,K(·|S,K) × δM over U × [1 : L] it
produces U = ŨPU|S,K(·|S,K)×δM ,2 and sends the generated

2The Poisson functional representation produces a pair (Ũ , M̃), and U is
set to the first component of the pair.

X|(S,K,U) ∼ PX|S,K,U . The decoder observes Y,K and
outputs M̂ = M̃P̂U|Y,K(·|Y,K)×PM

by the Poisson functional

representation, where P̂U |Y,K is the conditional distribution
computed by the joint distribution PS,KPU,X|S,KÂY |X . When
the attack channel is AY |X ∈ A, the error probability is

Pe(A) := 1−PY |X∼AY |X

(
d1(S,X) ≤ D1 AND M = M̂

)
= E

[
1− 1{d1(S,X) ≤ D1} · 1{M = M̂}

]
= E

[
1− 1{d1(S,X) ≤ D1}P

(
M = M̂ |M,S,U, Y,K

)]
≤ E

[
1− 1{d1(S,X) ≤ D1}

·P
(
(U,M) = (Ũ , M̃)P̂U|Y,K(·|Y,K)×PM

|M,S,U, Y,K
)]

(a)

≤ E

[
1− 1{d1(S,X) ≤ D1}

·
(
1 +

dPU |S,K(·|S,K)× δM

dP̂U |Y,K(·|Y,K)× PM

(U,M)
)−1

]
= E

[
1− 1{d1(S,X)≤D1}

(
1 + L2−ι̂(U ;Y |K)+ι(U ;S|K)

)−1
]

≤ sup
AY |X∈A

EY |X∼AY |X

[
1− 1{d1(S,X) ≤ D1}

·
(
1 + L2−ι̂(U ;Y |K)+ι(U ;S|K)

)−1
]

=: Pe,

where (a) is by the Poisson matching lemma.3 If we allow the
encoder and the decoder to share unlimited additional common
randomness, we can assume the codebook C = ((Ūi, M̄i), Ti)i
is actually shared, and conclude that Pe = supA∈A Pe(A) ≤
Pe. Nevertheless, the only actual common randomness be-
tween the encoder and the decoder is K, which we cannot
control. Therefore, we have to fix the codebook.

Let Pe(A, c) be the probability of error when the at-
tack channel is A and the codebook is C = c. We have
Pe(A) = EC [Pe(A, C)] Let Ã ⊆ A attain the minimum
in Nϵ(A). Consider any A ∈ A, and let Ã ∈ Ã satisfy
supx∈X ∥AY |X(·|x) − ÃY |X(·|x)∥TV ≤ ϵ. The TV distance
between the joint distribution of M,S,K,U,X, Y under the
attack channel A conditional on C = c and the joint distribu-
tion under the attack channel Ã conditional on C = c is also
bounded by ϵ. Hence |Pe(A, c)− Pe(Ã, c)| ≤ ϵ and

Pe(A, c) ≤ Pe(Ã, c) + ϵ ≤
∑
Ã∈Ã

Pe(Ã, c) + ϵ.

Therefore,

EC

[
sup
A∈A

Pe(A, C)
]
≤ EC

[ ∑
Ã∈Ã

Pe(Ã, C) + ϵ
]

=
∑
Ã∈Ã

Pe(Ã) + ϵ ≤ |Ã| · Pe + ϵ.

3The Poisson matching lemma is applied on the conditional distributions
given M,S,U, Y,K. Also see the conditional Poisson matching lemma [19].



The proof is completed by the existence of a codebook c such
that supA∈A Pe(A, c) ≤ |Ã| · Pe + ϵ.

Note that when K = ∅, d1(s, x) = 0, and A = {AY |X} is
a singleton set, taking ÂY |X = AY |X , Theorem 2 reduces to
the one-shot Gelfand-Pinsker coding result in [19].

VI. RECOVERING THE ASYMPTOTIC RESULT

We first give a simple bound on the ϵ-covering number in
the case that X and Y are discrete and finite.

Proposition 3. If X and Y are finite, then

Nϵ(A) ≤
( 1

2ϵ
+

|Y|+ 1

2

)|X |·|Y|
.

Proof. Write d(A, Ã) := supx∈X ∥AY |X(·|x) −
ÃY |X(·|x)∥TV. We use the standard method to bound
the covering number, where we start with Ã = ∅, and add
A ∈ A not currently covered by Ã (i.e., minÃ∈Ã d(A, Ã) > ϵ)
to Ã one by one until all of A is covered. Note that every
two different Ã, Ã′ ∈ Ã produced this way must satisfy
d(Ã, Ã′) > ϵ, and hence the (ϵ/2)-balls {A : d(A, Ã) ≤ ϵ/2}
must be disjoint for Ã ∈ Ã.

We now treat AY |X as a transition probability matrix
A ∈ R|Y|×|X|. We have d(A, Ã) = (1/2)∥A − Ã∥1 =
(1/2)maxx

∑
y |Ay,x − Ãy,x|. The volume of the ball {A ∈

R|Y|×|X| : d(A, Ã) ≤ ϵ/2} (i.e., its Lebesgue measure
in the space R|Y|·|X |) is ((2ϵ)|Y|/(|Y|!))|X |, and all these
balls are subsets of {A ∈ R|Y|×|X| : minx,y Ay,x ≥
−ϵ, maxx

∑
y Ay,x ≤ 1+ϵ}, which has a volume ((1+(|Y|+

1)ϵ)|Y|/(|Y|!))|X |. Hence, the size of Ã is upper-bounded by

((1 + (|Y|+ 1)ϵ)|Y|/(|Y|!))|X |

((2ϵ)|Y|/(|Y|!))|X | =
( 1

2ϵ
+

|Y|+ 1

2

)|X |·|Y|
.

We now show that Theorem 2 recovers the asymptotic result
in [1] when S,K,X, Y are finite and discrete, and the attack
channel must be memoryless and is subject to a distortion
constraint, and hence giving a simple alternative proof to [1].
Consider sequences Sn = (S1, . . . , Sn), Kn, Xn, Y n where
(Si,Ki)

iid∼ PS,K . Consider a channel input distribution PX .
The class of attack channels An = An(PX) (which depends
on PX ) is taken to be

An(PX) :=
{
An

Y |X : AY |X ∈ A(PX)
}
,

A(PX) :=
{
AY |X : E(X,Y )∼PXAY |X [d2(X,Y )] ≤ D2

}
,

and d2 : X × Y → [0,∞) is a distortion measure, and D2 is
the allowed distortion level. In other words, the attacker can
only use memoryless channels An

Y |X that satisfy the expected
distortion constraint E[d2(X,Y )] ≤ D2. The asymptotic
hiding capacity given in [1] is

C = max
PU,X|S,K

min
AY |X :E[d2(X,Y )]≤D2

(
I(U ;Y |K)− I(U ;S|K)

)
.

where the maximum is over PU,X|S,K with E[d1(S,X)] ≤ D1.

We now show the achievability of the above asymptotic
rate as a direct corollary of Theorem 2. Fix PU,X|S,K which
achieves the above maximum subject to E[d1(S,X)] ≤ D′

1

where D′
1 < D1. Take ÂY |X to be the minimizer of the rate-

distortion function minAY |X :E[d2(X,Y )]≤D2
I(U ;Y |K), and

assume (S,K,U,X, Y ) ∼ PS,KPU,X|S,KÂY |X . Write the
information density and mutual information obtained from
this distribution as ι̂U ;Y |K and Î(U ;Y |K), respectively. Fix a
coding rate R < Î(U ;Y |K) − I(U ;S|K). We want to show
that this rate is achievable.

Consider any attack channel AY |X with E[d2(X,Y )] ≤ D2.
Let Aλ

Y |X := (1 − λ)ÂY |X + λAY |X for 0 ≤ λ ≤ 1. Write
Iλ(U ;Y |K) for the mutual information computed assuming
Y |X ∼ Aλ

Y |X . It is straightforward to check that

d

dλ
Iλ(U ;Y |K)

∣∣∣
λ=0

= EY |X∼AY |X [ι̂(U ;Y |K)]− Î(U ;Y |K).

By the optimality of Â, the above derivative is nonnegative,
and hence EY |X∼AY |X [ι̂(U ;Y |K)] ≥ Î(U ;Y |K). Therefore,
when we have i.i.d. sequences (Sn,Kn, Un, Xn, Y n) ∼
Pn
S,KPn

U,X|S,KAn
Y |X and L = ⌊2nR⌋, by law of large numbers,

L2−ι̂(Un;Y n|Kn)+ι(Un;Sn|Kn)

≤ 2nR−
∑n

i=1(ι̂(Ui;Yi|Ki)−ι(Ui;Si|Ki)) → 0

exponentially as n → ∞ since E[ι̂(Ui;Yi|Ki) −
ι(Ui;Si|Ki))] ≥ Î(U ;Y |K)− I(U ;S|K) > R. We also have
d1(S

n, Xn) =
∑n

i=1 d1(Si, Xi) > nD1 with probability ap-
proaching 0 exponentially since D′

1 < D1. These convergences
are uniform over all such attack channels AY |X since the
random variables are discrete and finite.

Therefore, to bound Pe using Theorem 2, it is left to bound
the ϵ-covering number Nϵ(An(PX)). Note that ∥An

Y |X(·|xn)−
Ãn

Y |X(·|xn)∥TV ≤
∑n

i=1 ∥AY |X(·|xi)− ÃY |X(·|xi)∥TV, and
hence we can construct a ϵ-cover of An(PX) using an (ϵ/n)-
cover of A(PX). Therefore, Nϵ(An(PX)) ≤ Nϵ/n(A(PX)) =
O((n/ϵ)|X |·|Y|) by Proposition 3, which grows much slower
than the exponential decrease of the expectation in Theorem 2.
Therefore, taking ϵ = 1/n, we have Pe → 0 as n → ∞.
Taking D′

1 → D1 completes the proof.
It is straightforward to convert this to a finite blocklength

result where n is a fixed number using the Berry-Esseen
theorem [40], [41]. This is left for future studies.

VII. CONCLUSION

In this paper, we presented a one-shot information-theoretic
analysis of the information hiding problem, proved by utilizing
the Poisson matching lemma. Compared with the existing
asymptotic results, our result applies to any distribution of the
host data, and any class of attack channels (not necessarily
memoryless or ergodic), and the decoder is uninformed of
the attack channel. We showed that our one-shot achievability
result recovers the asymptotic result in [1], hence giving a
simple alternative proof to [1] where X,K,X, Y are finite and
discrete, and the attack channel is memoryless and subject to
a distortion constraint.
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