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Oblivious Relay Channel (Sanderovich et al., 2008; Simeone et al., 2011)

M ﬂ Enc %PYIX}XH Relay % Dec P M

In the oblivious relay channel / information bottleneck channel:

@ An encoder encodes a message M into X" = (Xq,...,Xy)

e X" is sent through a memoryless channel Py x
@ A relay observes Y, and relays it via rate-limited description W

o Relay is oblivious—does not know the codebook
@ Relay can only perform lossy compression on Y without decoding it

@ Decoder observes W and attempts to decode M
Application: cloud radio access networks (Aguerri et al., 2019)

@ Base stations are connected to a cloud-computing central processor via
error-free rate-limited fronthaul links
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Oblivious Relay Channel (Sanderovich et al., 2008; Simeone et al., 2011)

M ﬂ Enc }XHPYIX}XH Relay % Dec %» M

Asymptotic Capacity (Sanderovich et al., 2008)

As n — oo, minimum description rate needed to support a message
transmission rate C is given by the information bottleneck

IB(C) := min I(Y; U), XeYeU
Pyjy: 1(X;U)=C

Intuition:
o If we want to transmit M at rate C, we need /(X"; W) > nC

o If description rate is Ry, then I(Y"™; W) < nRy
® Minimum Ry is &~ minp,, .. n-1/(xnw)>c n= (Y™ W)
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Oblivious Relay Channel (Sanderovich et al., 2008; Simeone et al., 2011)

M ﬂ Enc }XHPYIX}XH Relay % Dec %» M

Asymptotic Capacity (Sanderovich et al., 2008)

As n — oo, minimum description rate needed to support a message
transmission rate C is given by the information bottleneck

IB(C) := min I(Y; U), XeYeU
Pu‘yI(X,U)ZC

@ The intuition only holds for n — oo
@ In practice, we always have a finite blocklength n
@ Also see Wu and Joudeh (2024) for an error exponent analysis

@ Our contribution: Nonasymptotic achievability results
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Nonasymptotic Oblivious Relay Channel

M ﬂ Enc }XHPYIX}XH Relay % Dec P M

@ For finite n, it matters whether W is fixed-length or variable-length

Theorem (Nonasymptotic Achievability for Fixed-Length Description)

For error probability ¢, a fixed-length description rate

IB(C) + \/%Q—l(e) Lo <|oin>

VIB(C) := Var[vy,u(Y; U) — Xux,u(X; U)]

is a “second-order information bottleneck”,
ty:.u(y; u) = log (PU|y(u|y)/PU(u)) is computed using the optimal Py y

in IB(C), and A* := {L1B(C)

suffices, where
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Nonasymptotic Oblivious Relay Channel

M ﬂ Enc %PYIX% Relay % Dec P M

@ For finite n, it matters whether W is fixed-length or variable-length

Theorem (Nonasymptotic Achievability for Variable-Length Description)

For error probability ¢, for a variable-length W € {0,1}* in a prefix code, a
description rate

(1-¢) <IB(C) + InnnCVIB(C)> +0 <\%>

suffices, where

CVIB(C) := E[Var[Xux.u(X; U) | Y, U]]

is a “conditional second-order IB"
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Nonasymptotic Oblivious Relay Channel

M H Enc %PY\X% Relay % Dec %V M

o Fixed-length:

IB(C) + \/%Q_l(e) Lo (Ioin>

where VIB(C) := Var[vy,u(Y; U) — Xux,u(X; U)]
o Variable-length:

(1—¢) (IB(C) + '"n”CVIB(c)> L0 (\%)

where CVIB(C) := E [Var[Xux;u(X; U) | Y, U]]
@ The two cases have vastly different behaviors

o This phenomenon was also observed in lossy source coding (Kostina
et al., 2015)
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Xxn y”! Wl sim |1 U™ |ch
M —» Enc Py x : Relay Dlgg T CDéZn

> M

Asymptotic rate: IB(C) = minp, . 1(X;U)>C I(Y; U)

Idea: Use W to simulate Py|y via channel simulation

o Decoder treat X" — U" as a channel Py x = Py xPyy, and use

ordinary channel decoder

@ One-shot variable-length channel simulation via strong functional
representation lemma (Li and El Gamal, 2018; Li, 2024):

E[|W]] < nl(Y; U) + log(nl(Y; U) +2) + 3

e Good enough to give asymptotic rate, but not enough

for nonasymptotic

Idea 2: Use nonasymptotic noisy lossy source coding (Kostina and

Verdd, 2016) together with Poisson matching lemma (Li and

Anantharam, 2021)
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Noisy Lossy Source Coding (Dobrushin and Tsybakov, 1962)

Noisy Description
Source Observation w Reconstruction

X" —» YY" —» Enc Dec —» 2z

2-discrete memoryless source X", Y"

Encoder observes Y”, sends description W to decoder
Decoder recovers Z", wants P(n™1 3", d(X;, Z;) > D) <«
Optimal asymptotic rate is (Dobrushin and Tsybakov, 1962)

R(D) := i ny:z
(B) PZ\YiE[rI/](I)r}7Z)]§D( )

For finite n, we again have two cases for W
Fixed-length: Optimal length is (Kostina and Verdd, 2016)

nR(D) + 1/nV(D)Q(¢) + O(log n)

where V(D) := Var[vy.z«(Y; Z*) + \*d(X, Z*)], Pz.y attains the
minimum in R(D), and \* := —R/(D)
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Noisy Lossy Source Coding (Dobrushin and Tsybakov, 1962)

Noisy Description
Source Observation 1778 Reconstruction
X —» YY" —» Enc Dec —» 2z

e Optimal asymptotic rate is R(D) := minp, .. E[d(X,2)]<D I(Y; 2)
e Fixed-length: Optimal length is (Kostina and Verdi, 2016)

nR(D) + 1/nV(D)Q(¢) + O(log n)

where V(D) := Var[vy.z-(Y; Z*) + \d(X, Z*)], \* := —R/(D)
@ Variable-length: We proved:

Theorem (Noisy Lossy Source Coding w/ Variable-Length Description)

For variable-length prefix-free description, we can have an expected length
(1- e)(nR(D) +4/(nln n)6\7(D)) + O(v/n),
where CV(D) := (\*)2E[Var[d(X, Z*)| Y, Z*]]
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One-shot Noisy Lossy Source Coding

@ We first show the following one-shot result (n = 1), via the technique
in (Kostina and Verdd, 2016) and the Poisson functional representation
(PFR) (Li and EI Gamal, 2018; Li and Anantharam, 2021)

Theorem (One-shot Lossy Source Coding w/ Variable-Length Description)

For any P, ¢ > 0, and function 5 : Y — [0, 1], there is a variable-length
code with P, < E[B(Y)] + € and

E[|W[] < £(E[(1 - B(Y))¥z(Y,D,€)]),

VYz(y, D, t)=infp,.pd(x,2)>D|Z,Y=y)<t a.s. D(Pz||Pz), £(t) = t+log(t+2)+4

@ PFR on the channel Pz\y' where conditional on Y =y, 7 has the
same distribution as Z ~ P3 conditional on ¢(y,Z,D) <€,
#ly.2,D) i= P(d(X,z) > DY = y)

@ Encoder produces index of PFR with probability 1 — 3(Y), or index 1
with probability 5(Y), then encodes index into W
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Nonasymptotic Variable-Length Oblivious Relay Channel
]\lﬂ Enc }ﬁqux}ﬂq Relay%Dec %V]LA{

Theorem (Nonasymptotic Achievability for Variable-Length Description)

Achievable rate: (1 —¢) <IB(C) + lnnnCVIB(C)> + O <\;> )

CVIB(C) := E[Var[Xux,u(X; U) | Y, U]]

Idea: Define distortion function, where small distortion = small error prob.
o Define d(x, u) = —x,u(x; u), and consider rate-distortion function
R(D) = miany:E[d(X,U)]SD I(Y; U) of noisy lossy source coding

e R(—C)=1B(C)
@ Noisy lossy source coding: Decoder recovers U™ where
> tx:u(Xi; Up) > nC with high prob.
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Nonasymptotic Variable-Length Oblivious Relay Channel

Theorem (Nonasymptotic Achievability for Variable-Length Description)

Achievable rate: (1 —e) <IB(C) + lnﬁ”CVIB(C)) +0 <\;> :

CVIB(C) := E[Var[Xux,u(X; U) | Y, U]]

Decoder recovers " where 3, tx.y(Xi; U;) > nC with high prob.

U" has “enough information” about X" for decoding nC message bits
o Use Poisson functional representation: X/, XJ, ... % Py, Poisson
process 0 < T1 < Top, ...

o Encoder sends X" = X},

Decoder recovers U" via noisy lossy source coding and recovers

M := argmin, Ty/ (Pxnun(Xg|0™)/ Pxn(X]))

@ Poisson matching lemma: Decodes correctly with high probability
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Conclusion

We proved:
@ Nonasymptotic achievability for oblivious relay channel
o Fixed and variable-length description

@ Nonasymptotic achievability for variable-length noisy lossy source
coding

Future directions:
@ Second order converses—are these results tight?

@ Error exponent for variable-length description
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