Nonasymptotic Oblivious Relaying and Variable-Length Noisy Lossy Source Coding

Yanxiao Liu*, Sepehr Heidari Advary† and Cheuk Ting Li*

* The Chinese University of Hong Kong

† Sharif University of Technology

2025 IEEE International Symposium on Information Theory

June 2025

Oblivious Relay Channel (Sanderovich et al., 2008; Simeone et al., 2011)

In the oblivious relay channel / information bottleneck channel:

- An encoder encodes a message M into $X^n = (X_1, \dots, X_n)$
- ullet X^n is sent through a memoryless channel $P_{Y\mid X}$
- ullet A relay observes Y^n , and relays it via rate-limited description W
 - Relay is oblivious—does not know the codebook
 - ullet Relay can only perform lossy compression on Y^n without decoding it
- ullet Decoder observes W and attempts to decode M

Application: cloud radio access networks (Aguerri et al., 2019)

 Base stations are connected to a cloud-computing central processor via error-free rate-limited fronthaul links

Oblivious Relay Channel (Sanderovich et al., 2008; Simeone et al., 2011)

Asymptotic Capacity (Sanderovich et al., 2008)

As $n \to \infty$, minimum description rate needed to support a message transmission rate C is given by the information bottleneck

$$\mathrm{IB}(\mathsf{C}) := \min_{P_{U|Y}: I(X;U) \geq \mathsf{C}} I(Y;U), \qquad X \leftrightarrow Y \leftrightarrow U$$

Intuition:

- If we want to transmit M at rate C, we need $I(X^n; W) \ge nC$
- If description rate is R_W , then $I(Y^n; W) \leq nR_W$
- Minimum R_W is $\approx \min_{P_{W|Y^n: n^{-1}I(X^n;W)>C}} n^{-1}I(Y^n;W)$

Oblivious Relay Channel (Sanderovich et al., 2008; Simeone et al., 2011)

Asymptotic Capacity (Sanderovich et al., 2008)

As $n \to \infty$, minimum description rate needed to support a message transmission rate C is given by the **information bottleneck**

$$IB(C) := \min_{P_{U|V}: I(X;U) > C} I(Y;U), \qquad X \leftrightarrow Y \leftrightarrow U$$

- The intuition only holds for $n \to \infty$
- ullet In practice, we always have a finite blocklength n
- Also see Wu and Joudeh (2024) for an error exponent analysis
- Our contribution: Nonasymptotic achievability results

Nonasymptotic Oblivious Relay Channel

For finite n, it matters whether W is fixed-length or variable-length

Theorem (Nonasymptotic Achievability for **Fixed-Length** Description)

For error probability ϵ , a fixed-length description rate

$$\operatorname{IB}(\mathsf{C}) + \sqrt{\frac{1}{n}} \operatorname{VIB}(\mathsf{C}) Q^{-1}(\epsilon) + O\left(\frac{\log n}{n}\right)$$

suffices, where

$$VIB(C) := Var \big[\iota_{Y;U}(Y;U) - \lambda^* \iota_{X;U}(X;U) \big]$$

is a "second-order information bottleneck",

 $\iota_{Y:U}(y;u) := \log \left(P_{U|Y}(u|y) / P_U(u) \right)$ is computed using the optimal $P_{U|Y}$ in IB(C), and $\lambda^* := \frac{d}{dC} IB(C)$

Nonasymptotic Oblivious Relay Channel

For finite n, it matters whether W is fixed-length or variable-length

Theorem (Nonasymptotic Achievability for Variable-Length Description)

For error probability ϵ , for a variable-length $W \in \{0,1\}^*$ in a prefix code, a description rate

$$(1-\epsilon)\bigg(\mathrm{IB}(\mathsf{C})+\sqrt{rac{\ln n}{n}\mathrm{CVIB}(\mathsf{C})}\bigg)+O\left(rac{1}{\sqrt{n}}
ight)$$

suffices, where

$$CVIB(C) := \mathbb{E} \big[Var \big[\lambda^* \iota_{X;U}(X;U) \, \big| \, Y, U \big] \big]$$

is a "conditional second-order IB"

Nonasymptotic Oblivious Relay Channel

Fixed-length:

$$\operatorname{IB}(\mathsf{C}) + \sqrt{\frac{1}{n}} \operatorname{VIB}(\mathsf{C}) Q^{-1}(\epsilon) + O\left(\frac{\log n}{n}\right)$$

where $VIB(C) := Var[\iota_{Y;U}(Y;U) - \lambda^* \iota_{X;U}(X;U)]$

Variable-length:

$$(1-\epsilon)\bigg(\mathrm{IB}(\mathsf{C})+\sqrt{\frac{\ln n}{n}\mathrm{CVIB}(\mathsf{C})}\bigg)+O\left(\frac{1}{\sqrt{n}}\right)$$

where $\text{CVIB}(\mathsf{C}) := \mathbb{E} \big[\text{Var} \big[\lambda^* \iota_{X;U}(X;U) \, \big| \, Y,U \big] \big]$

- The two cases have vastly different behaviors
 - This phenomenon was also observed in lossy source coding (Kostina et al., 2015)

Analysis

- Asymptotic rate: $IB(C) = \min_{P_{U|Y}: I(X;U) \geq C} I(Y; U)$
- Idea: Use W to simulate $P_{U|Y}$ via channel simulation
 - Decoder treat $X^n \to U^n$ as a channel $P_{U|X} = P_{Y|X} P_{U|Y}$, and use ordinary channel decoder
- One-shot variable-length channel simulation via strong functional representation lemma (Li and El Gamal, 2018; Li, 2024):

$$\mathbb{E}[|W|] \le nI(Y;U) + \log(nI(Y;U) + 2) + 3$$

- Good enough to give asymptotic rate, but not enough for nonasymptotic
- Idea 2: Use nonasymptotic noisy lossy source coding (Kostina and Verdú, 2016) together with Poisson matching lemma (Li and Anantharam, 2021)

Noisy Lossy Source Coding (Dobrushin and Tsybakov, 1962)

- 2-discrete memoryless source Xⁿ, Yⁿ
- Encoder observes Yⁿ, sends description W to decoder
- Decoder recovers Z^n , wants $\mathbb{P}(n^{-1}\sum_i d(X_i, Z_i) > D) \leq \epsilon$
- Optimal asymptotic rate is (Dobrushin and Tsybakov, 1962)

$$R(D) := \min_{P_{Z|Y}: \mathbb{E}[d(X,Z)] \leq D} I(Y; Z)$$

- For finite n, we again have two cases for W
- Fixed-length: Optimal length is (Kostina and Verdú, 2016)

$$nR(\mathsf{D}) + \sqrt{n\tilde{\mathsf{V}}(\mathsf{D})}Q^{-1}(\epsilon) + O(\log n)$$

where $\tilde{\mathrm{V}}(\mathsf{D}) := \mathrm{Var}[\iota_{Y;Z^*}(Y;Z^*) + \lambda^* d(X,Z^*)], \, P_{Z^*|Y}$ attains the minimum in R(D), and $\lambda^* := -R'(D)$

Noisy Lossy Source Coding (Dobrushin and Tsybakov, 1962)

- Optimal asymptotic rate is $R(D) := \min_{P_{Z|Y}: \mathbb{E}[d(X,Z)] \leq D} I(Y;Z)$
- Fixed-length: Optimal length is (Kostina and Verdú, 2016)

$$nR(D) + \sqrt{n\tilde{V}(D)}Q^{-1}(\epsilon) + O(\log n)$$

where
$$\tilde{\mathrm{V}}(\mathsf{D}) := \mathrm{Var}[\iota_{Y;Z^*}(Y;Z^*) + \lambda^* d(X,Z^*)]$$
, $\lambda^* := -R'(\mathsf{D})$

• Variable-length: We proved:

Theorem (Noisy Lossy Source Coding w/ Variable-Length Description)

For variable-length prefix-free description, we can have an expected length

$$(1-\epsilon)\Big(nR(\mathsf{D})+\sqrt{(n\ln n)\widetilde{\mathrm{CV}}(\mathsf{D})}\Big)+O(\sqrt{n}),$$

where
$$\widetilde{\mathrm{CV}}(\mathsf{D}) := (\lambda^*)^2 \mathbb{E}[\mathrm{Var}[d(X,Z^*) \,|\, Y,Z^*]]$$

One-shot Noisy Lossy Source Coding

• We first show the following one-shot result (n=1), via the technique in (Kostina and Verdú, 2016) and the Poisson functional representation (PFR) (Li and El Gamal, 2018; Li and Anantharam, 2021)

Theorem (One-shot Lossy Source Coding w/ Variable-Length Description)

For any $P_{\bar{Z}}$, $\epsilon'>0$, and function $\beta:\mathcal{Y}\to[0,1]$, there is a variable-length code with $P_{\mathrm{e}}\leq\mathbb{E}[\beta(Y)]+\epsilon'$ and

$$\mathbb{E}[|W|] \leq \ell \left(\mathbb{E}[(1 - \beta(Y))\psi_{\bar{Z}}(Y, D, \epsilon')] \right),$$

$$\psi_{\bar{Z}}(y, D, t) = \inf_{P_Z: \mathbb{P}(d(X, Z) > D|Z, Y = y) \le t \text{ a.s.}} D(P_Z || P_{\bar{Z}}), \ \ell(t) = t + \log(t+2) + 4$$

- PFR on the channel $P_{\hat{Z}|Y}$, where conditional on Y=y, \hat{Z} has the same distribution as $\bar{Z}\sim P_{\bar{Z}}$ conditional on $\phi(y,\bar{Z},D)\leq\epsilon'$, $\phi(y,z,D):=\mathbb{P}(d(X,z)>D|Y=y)$
- Encoder produces index of PFR with probability $1 \beta(Y)$, or index 1 with probability $\beta(Y)$, then encodes index into W

Nonasymptotic Variable-Length Oblivious Relay Channel

Theorem (Nonasymptotic Achievability for **Variable-Length** Description)

Achievable rate:
$$(1 - \epsilon) \left(\operatorname{IB}(\mathsf{C}) + \sqrt{\frac{\ln n}{n}} \operatorname{CVIB}(\mathsf{C}) \right) + O\left(\frac{1}{\sqrt{n}}\right),$$

$$\operatorname{CVIB}(\mathsf{C}) := \mathbb{E} \left[\operatorname{Var} \left[\lambda^* \iota_{X;U}(X;U) \mid Y,U \right] \right]$$

Idea: Define distortion function, where small distortion \Rightarrow small error prob.

- Define $d(x, u) = -\iota_{X;U}(x; u)$, and consider rate-distortion function $R(D) = \min_{P_{\tilde{U}|Y}: \mathbb{E}[d(X,\tilde{U})] \leq D} I(Y; \tilde{U})$ of noisy lossy source coding
- R(-C) = IB(C)
- Noisy lossy source coding: Decoder recovers \hat{U}^n where $\sum_i \iota_{X;U}(X_i; \hat{U}_i) \ge n\mathsf{C}$ with high prob.

Nonasymptotic Variable-Length Oblivious Relay Channel

Theorem (Nonasymptotic Achievability for Variable-Length Description)

Achievable rate:
$$(1 - \epsilon) \left(\mathrm{IB}(\mathsf{C}) + \sqrt{\frac{\ln n}{n}} \mathrm{CVIB}(\mathsf{C}) \right) + O\left(\frac{1}{\sqrt{n}}\right),$$

$$\mathrm{CVIB}(\mathsf{C}) := \mathbb{E} \left[\mathrm{Var} \left[\lambda^* \iota_{X;U}(X;U) \mid Y,U \right] \right]$$

- Decoder recovers \hat{U}^n where $\sum_i \iota_{X:U}(X_i; \hat{U}_i) \geq nC$ with high prob.
- \hat{U}^n has "enough information" about X^n for decoding nC message bits
- Use Poisson functional representation: $\bar{X}_1^n, \bar{X}_2^n, \dots \stackrel{iid}{\sim} P_{X^n}$, Poisson process $0 < T_1 < T_2, ...$
- Encoder sends $X^n = \bar{X}_M^n$
- Decoder recovers \hat{U}^n via noisy lossy source coding and recovers

$$\hat{M} := \operatorname{argmin}_k T_k / \left(P_{X^n \mid U^n}(\bar{X}_k^n | \hat{U}^n) / P_{X^n}(\bar{X}_k^n) \right)$$

Poisson matching lemma: Decodes correctly with high probability

Conclusion

We proved:

- Nonasymptotic achievability for oblivious relay channel
 - Fixed and variable-length description
- Nonasymptotic achievability for variable-length noisy lossy source coding

Future directions:

- Second order converses—are these results tight?
- Error exponent for variable-length description

Acknowledgement

This work was partially supported by two grants from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No.s: CUHK 24205621 (ECS), CUHK 14209823 (GRF)].

References

- Aguerri, I. E., Zaidi, A., Caire, G., and Shamai, S. (2019). On the capacity of cloud radio access networks with oblivious relaying. IEEE Transactions on Information Theory, 65(7):4575–4596.
- Dobrushin, R. and Tsybakov, B. (1962). Information transmission with additional noise. IRE Transactions on Information Theory, 8(5):293–304.
- Kostina, V., Polyanskiy, Y., and Verdú, S. (2015). Variable-length compression allowing errors. *IEEE Transactions on Information Theory*, 61(8):4316–4330.
- Kostina, V. and Verdú, S. (2016). Nonasymptotic noisy lossy source coding. IEEE Transactions on Information Theory, 62(11):6111–6123.
- Li, C. T. (2024). Channel simulation: Theory and applications to lossy compression and differential privacy. Foundations and Trends® in Communications and Information Theory, 21(6):847–1106.
- Li, C. T. and Anantharam, V. (2021). A unified framework for one-shot achievability via the Poisson matching lemma. IEEE Transactions on Information Theory, 67(5):2624–2651.
- Li, C. T. and El Gamal, A. (2018). Strong functional representation lemma and applications to coding theorems. IEEE Transactions on Information Theory, 64(11):6967–6978.
- Sanderovich, A., Shamai, S., Steinberg, Y., and Kramer, G. (2008). Communication via decentralized processing. IEEE Transactions on Information Theory, 54(7):3008–3023.
- Simeone, O., Erkip, E., and Shamai, S. (2011). On codebook information for interference relay channels with out-of-band relaying. *IEEE Transactions on Information Theory*, 57(5):2880–2888.
- Wu, H. and Joudeh, H. (2024). An achievable error exponent for the information bottleneck channel. In 2024 IEEE International Symposium on Information Theory (ISIT), pages 1297–1302. IEEE.