Abstract

We introduce a new class of codes, called weighted parity-check codes, where each parity-check bit has a weight that indicates its likelihood to be one (instead of fixing each parity-check bit to be zero). It is applicable to a wide range of settings, e.g. asymmetric channels, channels with state and/or cost constraints, and the Wyner-Ziv problem, and can provably achieve the capacity. For the channel with state (Gelfand-Pinsker) setting, our code not only achieves the capacity of any channel with state, but also achieves a smaller error rate compared to the nested linear code.

Ideas and Advantages

The goal is to present a general code construction based on weighted code**book** idea, but with a linear structure for efficient encoding and decoding.

- The codebook is a "fuzzy set", where each bit sequence has a weight that corresponds to the likelihood that the sequence is selected.
- By [1], weighted codebook eliminates the need of subcodebooks and gives sharper finite-blocklength and second-order error bounds.
- It applies to general(symmetric/asymmetric) channels with/without state.

Channels with State Information

Consider the channel has a state sequence $\mathbf{s} = [s_1, \ldots, s_n]$, where $s_i \in \mathcal{S}$ (not necessarily binary), $s_i \stackrel{iid}{\sim} P_S$, is available noncausally to the encoder. Given s, the encoder encodes message $\mathbf{m} \in \mathbb{F}_2^k$ into $\mathbf{x} \in \mathbb{F}_2^n$, which is sent through a memoryless channel $P_{Y|S,X}(y|s,x)$. The decoder receives y and outputs $\hat{\mathbf{m}}$. The input may have a cost constraint $\mathbf{E}[\sum_{i=1}^{n} c(s_i, x_i)] \leq nD$, where $c: \mathcal{S} \times \mathbb{F}_2 \to [0, \infty)$.

Binary-Hamming Information Embedding

Consider $s_i \stackrel{iid}{\sim} \operatorname{Bern}(1/2)$ and $X \to Y$ is $\operatorname{BSC}(\beta)$. We have an expected cost/distortion constraint $\mathbf{E}[|\{i: x_i \neq s_i\}|] \leq nD$. For $0 \leq \beta \leq D \leq 1/2$, the capacity is the upper concave envelope of $H(D) - H(\beta)$.

Figure 1. Block diagram of channel coding with state information. The encoder embeds ${f m}$ into the channel input x, which is with a cost constraint. $\mathbf{e} \sim \text{Ber}(\beta)$ is the channel noise.

References

Weighted Parity-Check Codes Yanxiao Liu* Cheuk Ting Li Chih Wei Ling*

* indicates equal contribution Department of Information Engineering, The Chinese University of Hong Kong

$\rightarrow \hat{\mathbf{m}}$

Weighted Parity-Check Codes (WPC)

In channel coding, the encoder encodes the message $\mathbf{m} \in \mathbb{F}_2^k$ into codeword $\mathbf{x} \in \mathbb{F}_2^n$. The decoder receives $\mathbf{y} \in \mathbb{F}_2^n$ and recovers $\hat{\mathbf{m}} \in \mathbb{F}_2^k$.

Randomly choose a full-rank parity check matrix $\mathbf{H} \in \mathbb{F}_2^{n \times n}$. For a bias vector $\mathbf{q} = [q_1, \dots, q_n] \in [0, 1]^n$, define the \mathbf{q} -weight of a vector $\mathbf{u} \in \mathbb{F}_2^n$ as

$$w_{\mathbf{q}}(\mathbf{u}) := \prod_{i=1}^{n} q_i^{u_i} (1 - q_i)^{1 - u_i}$$

Intuitively, $w_{\mathbf{q}}(\mathbf{u})$ is the probability of \mathbf{u} assuming the entries $u_i \sim \text{Bern}(q_i)$ are independent across i.

Given the codeword/parity bias vectors $\mathbf{p}, \mathbf{q} \in [0, 1]^n$, the query function is $f_{\mathbf{H}}(\mathbf{p},\mathbf{q}) := \operatorname{argmax}_{\mathbf{x}\in\mathbb{F}_{2}^{n}} w_{\mathbf{p}}(\mathbf{x})w_{\mathbf{q}}(\mathbf{x}\mathbf{H}^{T}).$ (1)

The encoder has two parameters: the encoder codeword bias function \mathbf{p}_e : $\mathbb{F}_2^k \to [0,1]^n$ which maps the message $\mathbf{m} \in \mathbb{F}_2^k$ (and other information) available at the encoder) to a bias vector $\mathbf{p}_e(\mathbf{m})$, and the encoder parity bias function $\mathbf{q}_e: \mathbb{F}_2^k \to [0,1]^n$. The actual encoding function is $\mathbf{m} \mapsto \mathbf{x} = f_{\mathbf{H}} \left(\mathbf{p}_e(\mathbf{m}), \, \mathbf{q}_e(\mathbf{m}) \right).$

The decoder likewise has two parameters: the decoder codeword and parity bias functions $\mathbf{p}_d, \mathbf{q}_d: \mathbb{F}_2^n \to [0,1]^n$. The decoding function is $\mathbf{y} \mapsto \hat{\mathbf{m}} = \left[(\hat{\mathbf{x}} \mathbf{H}^T)_1, \dots, (\hat{\mathbf{x}} \mathbf{H}^T)_k \right],$ where $\hat{\mathbf{x}} := f_{\mathbf{H}}(\mathbf{p}_d(\mathbf{y}), \mathbf{q}_d(\mathbf{y})).$

Weighted Parity-Check Codes with State (WPCS)

The encoder observes \mathbf{m}, \mathbf{s} and uses $\mathbf{p}_e(\mathbf{m}, \mathbf{s}), \mathbf{q}_e(\mathbf{m}, \mathbf{s})$ to obtain \mathbf{x} . The decoder uses $\mathbf{p}_d(\mathbf{y})$, $\mathbf{q}_d(\mathbf{y})$ to obtain $\hat{\mathbf{x}}$, and outputs $\hat{\mathbf{m}} = [(\hat{\mathbf{x}}\mathbf{H}^T)_1, \dots, (\hat{\mathbf{x}}\mathbf{H}^T)_k]$.

$\mathbf{p}_e(\mathbf{m},\mathbf{s}) = [p]$	$D_e(s_1),\ldots,$
$\mathbf{q}_e(\mathbf{m},\mathbf{s}) = [\mathbf{r}]$	$\mathbf{n}, \mathbf{q}],$
$\mathbf{p}_d(\mathbf{y}) = [p]$	$p_d(y_1),\ldots$
$\mathbf{q}_d(\mathbf{y}) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$	$\frac{1}{2}1^k,\mathbf{q}],$

such that $\mathbf{q} = [q_1, \ldots, q_{n-k}]$, where $q_i \sim P_Q$ i.i.d., and P_Q is a distribution over [0,1] symmetric about 1/2 (i.e., if $Q \sim P_Q$, then $1 - Q \sim P_Q$).

Parity Bias Distribution

The nested linear code [2] is a special case of WPCS, where there are n-k-kparity-check bits fixed to zero (i.e., $q_i = 0$), and k unused parity-check bits $(q_i = 1/2)$, where $k \in \{0, \ldots, n-k\}$ is the dimension of each coset. It can be approximated by taking $P_Q(0) = P_Q(1) = (1 - \gamma)/2$, $P_Q(1/2) = \gamma$, where $\gamma = k/(n-k)$, giving around $(n-k)P_Q(1/2) = k$ unused parity-check bits.

We construct our P_Q so that (4) holds, named Threshold linear P_Q using a cdf:

$$I_Q(t) := \begin{cases} 0 & \text{if} \\ \max\{\theta/2, 0\} & \text{if} \\ t & \text{if} \\ 1 - \max\{\theta/2, 0\} & \text{if} \\ 1 & \text{if} \end{cases}$$

where $\theta \in [-1, 1]$ is chosen such that (4) holds.

 $= 2^{-\sum_{i=1}^{n} H_b(u_i, q_i)}$

(2)

 $\dots, p_e(s_n)],$

 $[\ldots, p_d(y_n)],$

t < 0 $0 \leq t < |\theta|/2$

(3)

 $|\theta|/2 \le t < 1 - |\theta|/2$ $1 - |\theta|/2 \le t < 1$ if $t \geq 1$,

Optimality of the WPC

Let $|\mathcal{S}|, |\mathcal{Y}| < \infty$, fix $P_{X|S}$. Consider WPCS that $p_e(s) = P_{X|S}(1|s), p_d(y) = 0$ $P_{X|Y}(1|y)$, and P_Q is discrete and over [0,1] with finite support satisfying $\mathbf{E}[H_b(Q)] = \frac{1 - H(X|S)}{1 - R}.$ (4)For any R < I(X;Y) - I(X;S), as $n \to \infty$, the error probability goes to 0.

Performance Evaluation

Figure 2. Performance of n = 20, BSC channel of crossover probability $\beta = 0.05$. Note we use $p_e(s) = \alpha^{1-s}(1-\alpha)^s$ for $S \to X$ be about $BSC(\alpha)$, $p_d(y) = \beta^{1-y}(1-\beta)^y$ and (3) for P_Q .

^[1] Cheuk Ting Li and Venkat Anantharam. A unified framework for one-shot achievability via the poisson matching lemma. IEEE Transactions on Information Theory, 67(5):2624–2651, 2021. [2] Ram Zamir, Shlomo Shamai, and Uri Erez. Nested linear/lattice codes for structured multiterminal

binning. IEEE Transactions on Information Theory, 48(6):1250–1276, 2002.