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Introduction

Local differential privacy (DP) [1].

Local randomizer A : X → Z with distribution PZ|X satisfies (ε, δ)-local DP if for any

x, x′ ∈ X and measurable set S ⊆ Z ,

Pr(Z ∈ S|X = x) ≤ eε · Pr(Z ∈ S|X = x′) + δ.

Compression of DP mechanisms.

Objective: Compress DP mechanisms exactly (i.e., Z ∼ PZ|X ) to near-optimal sizes, while

ensuring privacy guarantees.

Prior works:

· [2-5]: Compress ε-local DP mechanism approximately.

· [6,7]: Dithered quantization tools ensure a correct simulated distribution, but only for

additive noise mechanisms.

Poisson Functional Representation (PFR) [8]

Let (Ti)i be a Poisson process with rate 1, independent of Zi
i.i.d.∼ Q. Then (Zi, Ti)i is a Pois-

son process with intensity measure Q × λ[0,∞). Fix distribution P absolutely continuous

w.r.t Q. Let

T̃i , Ti ·
(dP

dQ
(Zi)

)−1
.

Theorem: K , arg mini T̃i and Z = ZK , then Z ∼ P .

Our Contributions

Poisson private representation, which is:

(a) Exact: simulates PZ|X exactly;

(b) Universal: simulates any DP mechanism;

(c) Communication-efficient: compresses PZ|X to

I(X ; Z) + log
(
I(X ; Z) + 1

)
+ O(1) bits.

(d) Private: ensures both local and central DP.

Poisson Private Representation:
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Poisson Private Representation (PPR)

Algorithm 1 (PPR).

Input: private x ∈ X , (ε, δ)-local DP mechanism PZ|X , reference distribution Q, param-

eter α > 1.
(a) Generate shared randomness between user and server

(Zi)i=1,2,...
i.i.d.∼ Q.

(b) The user knows (Zi)i, x, PZ|X and performs:

(1) Generate the Poisson process (Ti)i with rate 1.
(2) Compute T̃i , Ti ·

(
dPZ|X(·|x)

dQ (Zi)
)−1

.

(3) Generate K ∈ Z+ with

Pr (K = k) = T̃ −α
k

/( ∞∑
i=1

T̃ −α
i

)
.

(4) Compress and send K (e.g., by Elias delta code).

(c) The server, which knows (Zi)i, K , outputs Z = ZK .

Remarks

The exactness of PPR follows from the PFR [8].

While the algorithm requires infinite samples, it can be reparametrized to terminate in

finite steps.

When α = ∞, PPR reduces to PFR.

Privacy guarantees

Thm 4.5: If the mechanism PZ|X is ε-DP, then PPR P(Zi)i,K|X with α > 1 is 2αε-DP.

Thm 4.8: If PZ|X is (ε, δ)-DP, then PPR P(Zi)i,K|X is (αε + ε̃, 2(δ + δ̃))-DP, for α > 1,
ε̃ ∈ (0, 1] and δ̃ ∈ (0, 1/3] s.t.

α ≤ e−4.2δ̃ε̃2/(− ln δ̃) + 1.

Exactness

The output Z of PPR follows PZ|X exactly.

Communication Efficiency

Thm 4.3: For PPR with α > 1, message K satisfies

E [log2 K] ≤ DKL (P (·|x)‖Q(·))
+ log2(3.56)/ min ((α − 1)/2, 1) .

K can be encoded by a prefix-free code with expected length ≈ DKL(P (·|x)‖Q(·)) bits
within a log gap. If X ∼ PX is random, take Q = PZ and the expected length

≈ I(X ; Z) (near-optimal).

Corollary 4.4: For PZ|X with ε-local DP, the compression size

≤ ` + log2 (` + 1) + 2 (bits),

where ` , ε log2 e + log2(3.56)/ min ((α − 1)/2, 1).

Distributed Mean Estimation

Consider n users, each with data Xi ∈ Rd. They use Gaussian mechanism and send

Zi ∼ N (Xi,
σ2

n Id) to server, where σ ≥ C
√

2 ln (1.25/δ)/ε. Server estimates mean as

µ̂(Zn) = 1
n

∑
i Zi.

Using PPR to compress the Gaussian mechanism:
1. µ̂(Zn) = 1

n

∑
i Zi is unbiased, has (ε, δ)-central DP.

2. PPR satisfies (2α
√

nε, 2δ)-local DP for ε < 1/
√

n.
3. The average per-user communication ≤ ` + log2(` + 1) + 2 bits,

` := d

2
log

(
nε2

2d log(1.25/δ)
+ 1

)
+ log2(3.56)

min{(α − 1)/2, 1}
.

Compare to CSGM [10] on distributed mean estimation:
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