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Introduction

Local differential privacy (DP) [1].
Local randomizer A : X — Z with distribution Py x satisfies (e,0)-local DP if for any
xz,r' € X and measurable set S C Z,

Pr(Z e S| X =x)<¢e - -Pr(ZeS|X=21)+0.

Compression of DP mechanisms.
Objective: Compress DP mechanisms exactly (i.e., Z ~ Py x) to near-optimal sizes, while
ensuring privacy guarantees.

Prior works:
. [2-5]: Compress e-local DP mechanism approximately.

. 16,7]: Dithered quantization tools ensure a correct simulated distribution, but only for
additive noise mechanisms.

Poisson Functional Representation (PFR) [8]

Let ('T;); be a Poisson process with rate 1, independent of Z; K Q. Then (Z;,T;); is a Pois-
son process with intensity measure Q) X A ). Fix distribution P absolutely continuous

w.r.t Q. Let

T, 2T, (;%(@))1-

Theorem: K £ argmin; 7, and Z = Zy, then Z ~ P.

Our Contributions

Poisson private representation, which is:
(a) Exact: simulates Py x exactly;
(b) Universal: simulates any DP mechanism;
(c) Communication-efficient: compresses Py y to
I[(X;Z)+1log (I(X; Z) + 1) + O(1) bits.

(d) Private: ensures both local and central DP.

Poisson Private Representation:
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Poisson Private Representation (PPR)

Algorithm 1 (PPR).
Input: private x € X, (¢, 0)-local DP mechanism Py x, reference distribution @, param-
eter a > 1.

(a) Generate shared randomness between user and server
ii.d.

(Zi)i:1,2,... ~ Q.

(b) The user knows (Z;);, =, Pzx and performs:

(1) Generate the Poisson process (T;), with rate 1.
(

(

)
2) Compute T, £ T; - (M (Zi>>
)

dQ
3) Generate K € Z, with

Pr(K =Fk) =T,/ (ifga).

(4) Compress and send K (e.g., by Elias delta code).

(c) The server, which knows (Z;);, K, outputs Z = Z.

Remarks

= The exactness of PPR follows from the PFR [8].

= While the algorithm requires infinite samples, it can be reparametrized to terminate in
finite steps.

= \When a = oo, PPR reduces to PFR.
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Privacy guarantees

* Thm 4.5: If the mechanism Py x is e-DP, then PPR Pz, xx with a > 1 is 2ae-DP.

* Thm 4.8: If Py x is (¢,0)-DP, then PPR Pz, k|x IS (ae +&,2(6 + 0))-DP, for a > 1,
g€ (0,1]and d € (0,1/3] s.t.

a < e 258% /(= 1nd) + 1.

Exactness

* The output Z of PPR follows Py exactly.

Communication Efficiency

= Thm 4.3: For PPR with o > 1, message K satisfies
E [logy K] < Dy (P(-]2)[|Q(-))
+ log,(3.56) / min ((aw — 1)/2,1).

K can be encoded by a prefix-free code with expected length =~ Dy (P(:|z)||Q(-)) bits
within a log gap. If X ~ Py is random, take () = P, and the expected length
~ I(X; Z) (near-optimal).
* Corollary 4.4: For Py x with e-local DP, the compression size
< /{+logy (£ +1)+2 (bits),

where £ £ clog, e + logy(3.56)/ min ((a — 1)/2,1).

Distributed Mean Estimation

= Consider n users, each with data X; € R% They use Gaussian mechanism and send
Zi ~ N(X;, %Q]Id) to server, where 0 > C'/21In (1.25/6) /. Server estimates mean as
ﬂ(Zn> — %Zz Zi.

= Using PPR to compress the Gaussian mechanism:
1. p(Z™) =13, Z; is unbiased, has (g, §)-central DP.

D. PPR satisfies (2ay/ne, 26)-local DP for e < 1/4/n.
3. The average per-user communication < £+ log,(¢ + 1) + 2 bits,

d ne? log,(3.56)
bi=glo <2dlog(1.25/5) + > T in{(a—1)/2, 1}

= Compare to CSGM [10] on distributed mean estimation:
Mean estimation (n = 500, d = 1000, 6=1e — 6)
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