Universal Exact Compression of Differentially Private Mechanisms

Introduction

Local differential privacy (DP).

A local randomizer A : X — Z satisfies local DP if for
any r, 2’ € X and measurable set S C Z,

Pr{A(z) e S} <e" -Pr{A(z)) € S} + 9.

Compression with public randomness.

A local DP mechanism A can be compressed in b bits if
o A(z) <M (K (x, R), R) where R is public
randomness:

e K(x, R) can be encoded by a prefix-free code with
expected length at most b;

o (K(x, R), R) jointly satisfies local DP.

Prior works. It is known that every e-local DP mecha-
nism can be compressed in O(g) bits with small distortion

1, 2]; however, the compressed schemes are approximate.

Our contributions. We introduce Poisson private rep-
resentation (PPR) that exactly simulates any local ran-

domizer within O(e) bits while ensuring local DP.

Poisson Functional Representation

Let (7}); be a Poisson process with rate 1 (i.e., 17,715 —
T, 15 — T, ... g Exp(1)), independent of Z; ) Q.
Then (Z;,T;); is a Poisson process with intensity measure
Q X )\[O,oo)-
Fix any distribution P over Z that is absolutely continu-
ous with respect to (). Let
~ d P —1
1 =1 (@(Zz)) -

Then (Z;, T}) is a Poisson process with intensity measure
P x )\[0700) [3,4,5].

Theorem (Poisson functional representation [3]).
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Poisson Private Representation (PPR)

Algorithm 1 (PPR).

Input: private data x € X, (¢, d)-local DP mechanism
P(-|x), reference distribution ()(-), compression

parameter v > 1.

(a) Generate public random variables
i.d.

(Zi)iz12.. ~ Q).

(b) The local user knows (Z;);, x, P(-|x) and performs:

1) Generate the Poisson process (7;). with rate 1.

(
(2) Computes T}, & T - (Z—P (ZZ-)>_1.
(

Q
3) Generates K = K (x;(Z;,T;);) € Z with
T—Oz
Pr(K=k) = ==
2im1 1

(4) Compresses and sends K € Z, (e.g., with Elias
delta code).

(c) The server, which knows (Z;);, K, outputs Z = Z.

Remarks:

Proposition 1 (Exactness).

The output Z of PPR follows P(-|z) exactly.

Theorem 2 (Compression size).

For PPR with @ > 1, message K € 7. satisfies
L [logy K| < Dk (P(+|2)[|Q(+))
+ 1logy(3.56) / min ((a — 1)/2, 1)
K can be encoded by a prefix-free code with expected

length approximately Dy (P(:|z)||Q(:)) bits within a
logarithmic gap. If X is random, the expected length

is approximately I(X; Z) which is almost optimal.
As a result, when P(-|z) satisfies e-local DP, then the
compression size Is at most

{+logy (0 + 1)+ 2 (bits),

where ¢ = £log, e + logy(3.56)/ min ((a — 1)/2, 1).

e [ he exactness of PPR follows from the Poisson functional representation.

e While the algorithm requires an infinite number of samples, it can be reparameterized and terminates in finite steps.

e PPR can also be used to compress central DP mechanisms and offer (weaker) local DP guarantees.

Privacy Guarantees of PPR

Theorem 3 (¢c-DP of PPR).

If the mechanism P(-|x) is e-DP, then PPR Pz, k., with a > 1 is 2ae-DP.

Theorem 4 ((¢,6)-DP of PPR).

Let /7 = Zji be with the smallest associated TK, l.e..
K :=argmin;T; and Z := Zg. Then Z ~ P.

If the mechanism P(-|x) is (g,9)-DP, then PPR P ;). |, with o > 1 is (2ae,24)-DP.

Theorem 5 (Tighter (¢,6)-DP of PPR).

If the mechanism P(-|x) is (g,0)-DP, then PPR Pz i, with o > 1 is (ae + €,2(0 + 0))-DP, for every £ € (0, 1] and

6 € (0,1/3] satisfying

~S

a < e 682 /(—1nd) + 1.

Applications

PPR-compressed Gaussian mechanism.

Consider the Gaussian mechanism
52
PZ|X(|I) — N <$,gﬂd>
and the reference distribution

2 02
Q:N<O, (C:Z | n)m),

where o > C'/21n(1.25/8)/e. Let Z; be the output of
PPR applied on Pz x(-|2;). Then it holds that

o i(Z") := 2% . Z; is unbiased w.r.t. the true mean.
o [i(Z") satisfies (&, §)-central DP.
e PPR satisfies (2aiy/ne, 20)-local DP.

e [ he average per-client communication cost is at most
2

O (dlog ( o (?j 53 1) + 1> bits.

Mean estimation (n = 500, d = 1000, 6 = 1e — 6)
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