Weighted Parity-Check Codes Chih Wei Ling **Yanxiao Liu** Cheuk Ting Li

Department of Information Engineering, The Chinese University of Hong Kong

 $\rightarrow \, \mathrm{m}$

Abstract

We introduce a new class of codes, called weighted parity-check codes, where each parity-check bit has a weight that indicates its likelihood to be one (instead of fixing each parity-check bit to be zero). It is applicable to a wide range of settings, e.g. asymmetric channels, channels with state and/or cost constraints, and the Wyner-Ziv problem, and can provably achieve the capacity. For the channel with state (Gelfand-Pinsker) setting, our code not only achieves the capacity of any channel with state, but also achieves a smaller error rate compared to the nested linear code.

Ideas and Advantages

The goal is to present a general code construction based on weighted code**book** idea, but with a linear structure for efficient encoding and decoding.

- The codebook is a "fuzzy set", where each bit sequence has a weight that corresponds to the likelihood that the sequence is selected.
- By [\[1\]](#page-0-0), weighted codebook eliminates the need of subcodebooks and gives sharper finite-blocklength and second-order error bounds.
- It applies to general(symmetric/asymmetric) channels with/without state.

Consider *sⁱ iid* ∼ Bern(1*/*2) and *X* → *Y* is BSC(*β*). We have an expected cost/distortion constraint $\mathbf{E}[|\{i : x_i \neq s_i\}|] \leq nD$. For $0 \leq \beta \leq D \leq 1/2$, the capacity is the upper concave envelope of $H(D) - H(\beta)$.

Channels with State Information

Consider the channel has a state sequence $\mathbf{s} = [s_1, \ldots, s_n]$, where $s_i \in \mathcal{S}$ (not necessarily binary), *sⁱ iid* ∼ *PS*, is available noncausally to the encoder. Given \mathbf{s} , the encoder encodes message $\mathbf{m} \in \mathbb{F}_2^k$ $\frac{k}{2}$ into $\mathbf{x} \in \mathbb{F}_2^n$ $\frac{n}{2}$, which is sent through a memoryless channel $P_{Y|S,X}(y|s,x)$. The decoder receives y and outputs $\hat{\mathbf{m}}$. The input may have a cost constraint $\mathbf{E}[\sum_{i=1}^{n}c(s_i,x_i)] \leq nD$, where $c : \mathcal{S} \times \mathbb{F}_2 \to [0, \infty)$.

Intuitively, $w_{q}(\mathbf{u})$ is the probability of **u** assuming the entries $u_i \sim \text{Bern}(q_i)$ are independent across *i*.

Given the codeword/parity bias vectors $\mathbf{p}, \mathbf{q} \in [0, 1]^n$, the *query function* is $f_{\mathbf{H}}(\mathbf{p}, \mathbf{q}) := \arg \max_{\mathbf{x} \in \mathbb{F}}$ *n* $w_{\mathbf{p}}(\mathbf{x})w_{\mathbf{q}}(\mathbf{x}\mathbf{H}^T)$)*.* (1)

The encoder has two parameters: the *encoder codeword bias function* \mathbf{p}_e : $\mathbb{F}_2^k \ \rightarrow \ [0,1]^n$ which maps the message $\mathbf{m} \ \in \ \mathbb{F}_2^k$ $_2^k$ (and other information available at the encoder) to a bias vector **p***e*(**m**), and the *encoder parity bias function* $\mathbf{q}_e : \mathbb{F}_2^k \to [0,1]^n$. The actual encoding function is

 $\mathbf{m} \mapsto \mathbf{x} = f_{\mathbf{H}}\left(\mathbf{p}_e(\mathbf{m}), \, \mathbf{q}_e(\mathbf{m})\right).$

Binary-Hamming Information Embedding

The decoder likewise has two parameters: the *decoder codeword and parity bias functions* $\mathbf{p}_d, \mathbf{q}_d : \mathbb{F}_2^n \to [0,1]^n$. The decoding function is $\mathbf{y} \mapsto \hat{\mathbf{m}} = \left[(\hat{\mathbf{x}} \mathbf{H}^T)_1, \dots, \ (\hat{\mathbf{x}} \mathbf{H}^T)_k\right]$ *,* (2) where $\hat{\mathbf{x}} := f_{\mathbf{H}}\left(\mathbf{p}_d(\mathbf{y}), \, \mathbf{q}_d(\mathbf{y})\right)$.

Figure 1. Block diagram of channel coding with state information. The encoder embeds m into the channel input **x**, which is with a cost constraint. $\mathbf{e} \sim \text{Ber}(\beta)$ is the channel noise.

such that $\mathbf{q} = [q_1, \ldots, q_{n-k}]$, where $q_i \sim P_Q$ i.i.d., and P_Q is a distribution over [0*,* 1] symmetric about 1*/*2 (i.e., if *Q* ∼ *PQ*, then 1 − *Q* ∼ *PQ*).

The nested linear code [\[2\]](#page-0-1) is a special case of WPCS, where there are *n*−*k*−˜*k* parity-check bits fixed to zero (i.e., $q_i = 0$), and \hat{k} unused parity-check bits $\tilde{h}(q_i=1/2)$, where $\tilde{k}\in\{0,\ldots,n-k\}$ is the dimension of each coset. It can be approximated by taking $P_Q(0) = P_Q(1) = (1 - \gamma)/2$, $P_Q(1/2) = \gamma$, where $\gamma = \tilde{k}/(n-k)$, giving around $(n-k)P_Q(1/2) = \tilde{k}$ unused parity-check bits.

We construct our P_Q so that [\(7\)](#page-0-2) holds, named *Threshold linear* P_Q using a cdf:

References

- [1] Cheuk Ting Li and Venkat Anantharam. A unified framework for one-shot achievability via the poisson matching lemma. *IEEE Transactions on Information Theory*, 67(5):2624-2651, 2021.
- [2] Ram Zamir, Shlomo Shamai, and Uri Erez. Nested linear/lattice codes for structured multiterminal binning. *IEEE Transactions on Information Theory*, 48(6):1250-1276, 2002.

 $t < 0$ $0 \le t < |\theta|/2$ $|\theta|/2 \le t < 1 - |\theta|/2$ $1 - |\theta|/2 \le t < 1$ if $t \geq 1$, (3)

Weighted Parity-Check Codes (WPC)

In channel coding, the encoder encodes the message $\mathbf{m} \in \mathbb{F}_2^k$ word $\mathbf{x} \in \mathbb{F}_2^n$ n_2^n . The decoder receives $\mathbf{y} \in \mathbb{F}_2^n$

Randomly choose a full-rank parity check matrix $\mathbf{H} \in \mathbb{F}_2^{n \times n}$ 2 . For a *bias* \mathbf{v} *ector* $\mathbf{q} = [q_1, \ldots, q_n] \in [0, 1]^n$, define the \mathbf{q} *-weight* of a vector $\mathbf{u} \in \mathbb{F}_2^n$ $\frac{n}{2}$ as

Consider WPCS that $|S|$, $[0, 1]$ with finite support. *Q* ∼ *P*_{*Q*}, *V* ∈ {0, 1}, *V* |*Q* \mathbf{E} [$H_b(X,$ If the minimizer of [\(4\)](#page-0-3) is unique $H(X|Y)$ we have

Let $|S|, |Y| < \infty$, fix $P_{X|S}$. Consider WPCS that $p_e(s) = P_{X|S}(1|s)$, $p_d(y) = 0$ $P_{X|Y}(1|y)$, and P_Q is discrete and over [0, 1] with finite support satisfying $\mathbf{E}[H_b(Q)] = % \begin{cases} \sum_{l=0}^m\frac{1}{l}\sum_{l=0}^{L-1} \left\vert \mathcal{A}_l(Q_l)\right\vert \leq 1, \ \sum_{l=0}^m\frac{1}{l}\sum_{l=0}^{L-1} \left\vert \mathcal{A}_l(Q_l)\right\vert \leq 1, \ \sum_{l=0}^m\frac{1}{l}\sum_{l=0}^{L-1} \left\vert \mathcal{A}_l(Q_l)\right\vert \leq 1, \ \sum_{l=0}^m\frac{1}{l}\sum_{l=0}^{L-1} \left\vert \mathcal{A}_l(Q_l)\right\vert \leq 1,$ $1 - H(X|S)$ $1 - R$ *.* (7) For any $R < I(X;Y) - I(X;S)$, as $n \to \infty$, the error probability goes to 0.

$$
w_{\mathbf{q}}(\mathbf{u}) := \prod_{i=1}^{n} q_i^{u_i} (1 - q_i)^{1 - u_i}
$$

Weighted Parity-Check Codes with State (WPCS)

The encoder observes \mathbf{m} , \mathbf{s} and uses $\mathbf{p}_e(\mathbf{m}, \mathbf{s})$, $\mathbf{q}_e(\mathbf{m}, \mathbf{s})$ to obtain \mathbf{x} . The decoder uses $\mathbf{p}_d(\mathbf{y}), \mathbf{q}_d(\mathbf{y})$ to obtain $\hat{\mathbf{x}},$ and outputs $\hat{\mathbf{m}} = [(\hat{\mathbf{x}} \mathbf{H}^T)_1, \dots,$ $(\hat{\mathbf{x}} \mathbf{H}^T)_k].$ $p_e(s_n)],$

$$
\mathbf{p}_e(\mathbf{m}, \mathbf{s}) = [p_e(s_1), \ldots
$$

$$
\mathbf{q}_e(\mathbf{m}, \mathbf{s}) = [\mathbf{m}, \, \mathbf{q}],
$$

 $\mathbf{p}_d(\mathbf{y}) = [p_d(y_1), \dots, p_d(y_n)],$

$$
\mathbf{q}_d(\mathbf{y}) = [\frac{1}{2}\mathbf{1}^k, \, \mathbf{q}],
$$

Parity Bias Distribution

$$
F_Q(t) := \begin{cases} 0 & \text{if} \\ \max\{\theta/2, 0\} & \text{if} \\ 1 - \max\{\theta/2, 0\} & \text{if} \\ 1 & \text{if} \end{cases}
$$

where $\theta \in [-1, 1]$ is chosen such that [\(7\)](#page-0-2) holds.

 $_2^k$ into code- $\hat{\textbf{z}}_2^n$ and recovers $\hat{\textbf{m}} \in \mathbb{F}_2^k$ $\frac{k}{2}$.

 $1-u_i = 2^{-\sum_{i=1}^n H_b(u_i,q_i)}$.

Optimality for the Channels with States

 $\mathbf{E}[H_b(\tilde{X},p_d(Y))] + (1-R)\mathbf{E}[H_b(\tilde{V},Q)] > \mathbf{E}[H_b(X,p_d(Y))] + (1-R)\mathbf{E}[H_b(V,Q)]$ and then as $n \to \infty$, the probability of error tends to 0.

Corollary

Performance Evaluation

Figure 2. Performance of $n = 20$, BSC channel of crossover probability $\beta = 0.05$. Note we use $p_e(s)=\alpha^{1-s}(1-\alpha)^s$ for $S\to X$ be about BSC(α), $p_d(y)=\beta^{1-y}(1-\beta)^y$ and [\(3\)](#page-0-4) for $P_Q.$

