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Abstract

We introduce a new class of codes, called weighted parity-check codes,

where each parity-check bit has a weight that indicates its likelihood to

be one (instead of fixing each parity-check bit to be zero). It is applicable

to a wide range of se ngs, e.g. asymmetric channels, channels with state

and/or cost constraints, and the Wyner-Ziv problem, and can provably

achieve the capacity. For the channel with state (Gelfand-Pinsker) se ng,

our code not only achieves the capacity of any channel with state, but also

achieves a smaller error rate compared to the nested linear code.

Ideas and Advantages

The goal is to present a general code construc on based onweighted code-

book idea, but with a linear structure for efficient encoding and decoding.

The codebook is a “fuzzy set”, where each bit sequence has a weight that

corresponds to the likelihood that the sequence is selected.

By [1], weighted codebook eliminates the need of subcodebooks and

gives sharper finite-blocklength and second-order error bounds.

It applies to general(symmetric/asymmetric) channels with/without state.

Channels with State Information

Consider the channel has a state sequence s = [s1, . . . , sn], where si ∈ S
(not necessarily binary), si

iid∼ PS, is available noncausally to the encoder.

Given s, the encoder encodes message m ∈ Fk
2 into x ∈ Fn

2 , which is sent

through a memoryless channel PY |S,X(y|s, x). The decoder receives y and

outputs m̂. The input may have a cost constraint E[∑n
i=1 c(si, xi)] ≤ nD,

where c : S × F2 → [0, ∞).

Binary-Hamming Information Embedding

Consider si
iid∼ Bern(1/2) and X → Y is BSC(β). We have an expected

cost/distor on constraint E[|{i : xi 6= si}|] ≤ nD. For 0 ≤ β ≤ D ≤ 1/2, the
capacity is the upper concave envelope of H(D) − H(β).
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Figure 1. Block diagram of channel coding with state informa on. The encoder embeds m
into the channel input x, which is with a cost constraint. e ∼ Ber(β) is the channel noise.
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Weighted Parity-Check Codes (WPC)

In channel coding, the encoder encodes the message m ∈ Fk
2 into code-

word x ∈ Fn
2 . The decoder receives y ∈ Fn

2 and recovers m̂ ∈ Fk
2 .

Randomly choose a full-rank parity check matrix H ∈ Fn×n
2 . For a bias

vector q = [q1, . . . , qn] ∈ [0, 1]n, define the q-weight of a vector u ∈ Fn
2 as

wq(u) :=
n∏

i=1
qui

i (1 − qi)1−ui = 2−
∑n

i=1 Hb(ui,qi).

Intui vely, wq(u) is the probability of u assuming the entries ui ∼ Bern(qi)
are independent across i.

Given the codeword/parity bias vectors p, q ∈ [0, 1]n, the query func on is

fH(p, q) := argmaxx∈Fn
2
wp(x)wq(xHT ). (1)

The encoder has two parameters: the encoder codeword bias func on pe :
Fk

2 → [0, 1]n which maps the message m ∈ Fk
2 (and other informa on

available at the encoder) to a bias vector pe(m), and the encoder parity

bias func on qe : Fk
2 → [0, 1]n. The actual encoding func on is

m 7→ x = fH (pe(m), qe(m)) .

The decoder likewise has two parameters: the decoder codeword and parity

bias func ons pd, qd : Fn
2 → [0, 1]n. The decoding func on is

y 7→ m̂ =
[
(x̂HT )1, . . . , (x̂HT )k

]
, (2)

where x̂ := fH (pd(y), qd(y)).

Weighted Parity-Check Codes with State (WPCS)

The encoder observes m, s and uses pe(m, s), qe(m, s) to obtain x. The de-
coder uses pd(y), qd(y) to obtain x̂, and outputs m̂ = [(x̂HT )1, . . . , (x̂HT )k].

pe(m, s) = [pe(s1), . . . , pe(sn)],
qe(m, s) = [m, q],

pd(y) = [pd(y1), . . . , pd(yn)],

qd(y) = [1
2
1k, q],

such that q = [q1, . . . , qn−k], where qi ∼ PQ i.i.d., and PQ is a distribu on over

[0, 1] symmetric about 1/2 (i.e., if Q ∼ PQ, then 1 − Q ∼ PQ).

Parity Bias Distribution

The nested linear code [2] is a special case ofWPCS, where there are n−k−k̃
parity-check bits fixed to zero (i.e., qi = 0), and k̃ unused parity-check bits

(qi = 1/2), where k̃ ∈ {0, . . . , n − k} is the dimension of each coset. It can
be approximated by taking PQ(0) = PQ(1) = (1 − γ)/2, PQ(1/2) = γ, where
γ = k̃/(n − k), giving around (n − k)PQ(1/2) = k̃ unused parity-check bits.

We construct our PQ so that (7) holds, named Threshold linear PQ using a cdf:

FQ(t) :=



0 if t < 0
max{θ/2, 0} if 0 ≤ t < |θ|/2
t if |θ|/2 ≤ t < 1 − |θ|/2
1 − max{θ/2, 0} if 1 − |θ|/2 ≤ t < 1
1 if t ≥ 1,

(3)

where θ ∈ [−1, 1] is chosen such that (7) holds.

Optimality for the Channels with States

Consider WPCS that |S|, |Y| < ∞, and PQ is a discrete distribu on over

[0, 1] with finite support. Let S ∼ PS, X|S ∼ PX|S, Y |(S, X) ∼ PY |S,X ,

Q ∼ PQ, V ∈ {0, 1}, V |Q ∼ PV |Q, where (PX|S, PV |Q) is the minimizer of
E [Hb(X, pe(S))] + (1 − R)E [Hb(V, Q)] , (4)

where Hb is the binary cross entropy func on, subject to

H(X|S) + (1 − R)H(V |Q) ≥ 1. (5)

If the minimizer of (4) is unique, and for all PX̃|Y , PṼ |Q sa sfying

H(X̃|Y ) + (1 − R)H(Ṽ |Q) ≥ 1 − R, (6)

we have

E[Hb(X̃, pd(Y ))]+(1−R)E[Hb(Ṽ , Q)] > E[Hb(X, pd(Y ))]+(1−R)E[Hb(V, Q)]
and then as n → ∞, the probability of error tends to 0.

Corollary

Let |S|, |Y| < ∞, fix PX|S. Consider WPCS that pe(s) = PX|S(1|s), pd(y) =
PX|Y (1|y), and PQ is discrete and over [0, 1] with finite support sa sfying

E[Hb(Q)] = 1 − H(X|S)
1 − R

. (7)

For any R < I(X ; Y ) − I(X ; S), as n → ∞, the error probability goes to 0.

Performance Evaluation
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Figure 2. Performance of n = 20, BSC channel of crossover probability β = 0.05. Note we
use pe(s) = α1−s(1 − α)s for S → X be about BSC(α), pd(y) = β1−y(1 − β)y and (3) for PQ.
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