Wireless Link Scheduling with Propagation Delays

LIU Yanxiao(Michael), first-year Ph.D student

The Chinese University of Hong Kong. Co-work with Prof. YANG Shenghao, Dr. MA Jun and undergraduate students FAN Yijun, LIU Litong, all in CUHK(SZ).

April 4, 2022

Guideline

- **•** Finished works:
	- **1** Theoretical framework of link scheduling problems with propagation delays.
	- ² Graphical characterization of network scheduling: cycles and maximal independent sets of graphs.
	- ³ Efficient algorithms exploiting nature of rate regions(target).

• Ongoing works:

- **1** Exact characterization of rate regions of line networks.
- More systematic schemes to find inner and outer bounds of rate regions.
- ³ Relationship with discrete(time-slotted) scheduling and continuous scheduling.
- 4 Continuity of rate regions.

Early works

- Early works fight with propagation delay to improve framed scheduling and achieved very limited gains.
- Some researches take use of propagation delays in underwater $MAC¹²³$ and achieve higher throughput than framed scheduling.
- Some researches model it to optimization problems.

In an N -node wireless network where any two links can generate collisions to each other. Chitre⁴ demonstrate thats:

- The optimal schedule is periodic.
- The upper bound of throughput with propagation delay is $N/2$.
- The upper bound of throughput with zero propagation delay is 1.

 1 Boria Peleato and Milica Stojanovic. "Distance aware collision avoidance protocol for ad-hoc underwater acoustic sensor networks". In: IEEE Communications Letters 11.12 (2007), pp. 1025–1027.

²Kurtis Kredo II, Petar Diukic, and Prasant Mohapatra. "STUMP: Exploiting position diversity in the staggered TDMA underwater MAC protocol". In: INFOCOM 2009, IEEE. IEEE. 2009, pp. 2961–2965.

3Hai-Heng Ng, Wee-Seng Soh, and Mehul Motani. "BiC-MAC: Bidirectional-concurrent MAC protocol with packet bursting for underwater acoustic networks". In: OCEANS 2010 MTS/IEEE SEATTLE. IEEE. 2010, pp. 1–7.

⁴ Mandar Chitre, Mehul Motani, and Shiraz Shahabudeen. "Throughput of networks with large propagation delays". In: IEEE Journal of Oceanic Engineering 37.4 (2012), pp. 645–658.

LIU Yanxiao(Michael) (CUHK) April 4, 2022 4 / 63

- Rate region can help understanding network resource allocation issues like rate control, power control and routing.
- In traditional framed scheduling, the rate region of link scheduling is taking the convex hull of all independent sets of a finite collision graph indicting the collision constraints between links.
- No existing works have given such a similar rate region in network with propagation delays.

- [Algorithms for Cycles in Scheduling Graph](#page-27-0)
- Rate Region of Line Networks

[Network Model and Scheduling Rate Region](#page-6-0)

The network model is a weighted directed hypergraph: $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D_{\ell})$:

- \bullet \mathcal{L} is the vertex set denoting links;
- \bullet I is the set of hyperedges denoting the collision relations among links;
- $D_{\mathcal L}$ is an $|{\mathcal L}|\times |{\mathcal L}|$ integer valued matrix with each entry $D_{\mathcal L}(l,l')$ specifying the weight from l to l' .
- A (communication) link is a pair (s, r) where $1 \leq s \neq r \leq N$ indicating the transmitting and receiving nodes, respectively.
- Each link l is associated with a subset $\mathcal{I}(l)$ of $2^\mathcal{L}$, called the *collision* set of l. Each subset of links ϕ in the collision set $\mathcal{I}(l)$ may cause collision with l.
- When the collision set $\mathcal{I}(l)$ satisfies for any $\phi \in \mathcal{I}(l)$, $|\phi| = 1$, the collision set is called binary.
- When the collision set is binary, the network is binary model and $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D_{\mathcal{L}})$ is a weighted directed graph.
- When the collision set is non-binary, the network is general model and $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D_{\mathcal{L}})$ is a weighted directed hypergraph.
- $D_{\mathcal{L}}(l,l')=D(\mathrm{s}_l,\mathrm{r}_l)-D(\mathrm{s}_{l'},\mathrm{r}_l)$, where $D(i,j)\in\mathbb{Z}^+$ denotes the signal propagation delay from node i to node j .
- It is sufficient for us to check collisions using D_f .

Network model of multihop line network $\mathcal{N}_{L,K}^{\mathsf{line}}$

- The network has nodes indexed by $1, \ldots, L + 1$.
- **o** The link set

$$
\mathcal{L} = \{l_i \triangleq (i, i+1), i = 1, \ldots, L\}.
$$

The collision set of link l_i is

$$
\mathcal{I}(l_i) = \{l_j : j \neq i, |j - i - 1| \leq K\}.
$$

• The link-wise delay matrix D_C of the L-length, K-hop collision line network has

$$
D_{\mathcal{L}}(l_i, l_j) = D(i, i + 1) - D(j, i + 1) = 1 - |j - i - 1|.
$$

Network model of multihop line network

Figure: The graphical representation of $\mathcal{N}_{4,1}^{\text{line}}$.

The (directed) periodic graph⁵ \mathcal{N}^{∞} induced by network \mathcal{N} :

^{5&}lt;br>**5 James B Orlin. "Some problems on dynamic/periodic graphs"**. In: Progress in Combinatorial Optimization. W. R. Pulleyblank, Ed. Orlando, FL: Academic Press, 1984, pp. 273–293.

Collision-free schedule and independent set

A collision-free schedule on $\mathcal N$ indicates an independent set of $\mathcal N^{\infty}$ induced by N .

 \bullet For a network $\mathcal N$, denote for a collision free schedule S and a link l

$$
R_S^{\mathcal{N}}(l) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} S(l, t),
$$

- We call $R_S^{\mathcal{N}} = (R_S^{\mathcal{N}}(l), l \in \mathcal{L})$ the rate vector of $S.$
- \bullet The collection $\mathcal{R}^{\mathcal{N}}$ of all the achievable rate vectors is called the rate region of N .
- For a network \mathcal{N} , the rate region $\mathcal{R}^{\mathcal{N}}$ can be achieved using collision-free, periodic schedules only.
- Define the *character* of the network N as:

$$
D_{\mathcal{N}}^* = \max_{l \in \mathcal{L}} \max_{\phi \in \mathcal{I}(l)} \max_{l' \in \phi} |D_{\mathcal{L}}(l, l')|.
$$

- Define \mathcal{N}^T as the subgraph of \mathcal{N}^{∞} with the vertex set $\mathcal{L} \times \{0, 1, \ldots, T-1\}.$
- Define $\mathcal{R}^{\mathcal{N}^T}$ as the convex hull of the rate vectors of all the independent sets of \mathcal{N}^T .

Theorem

For a network N .

$$
\mathcal{R}^{\mathcal{N}} = \operatorname{closure}\left(\cup_{T=1,2,\cdots} \frac{T}{T+D^*_{\mathcal{N}}} \mathcal{R}^{\mathcal{N}^T}\right),
$$

where $\text{closure}(\mathcal{A})$ is the closure of set A.

[Rate Region Characterization](#page-18-0)

Conditional independence property

- Consider $S[T, k]$ as the submatrix of S with cols $kT, \ldots, (k+1)T 1$.
- Whether $S[T, 2]$ is collision free is only affected by $S[T, 1]$.
- Given $S[T, 2]$, $S[T, 1]$ and $S[T, 3]$ do not affect the collision of each part when T is sufficiently large.
- We are dealing with **independent sets** of the graph.

Scheduling graphs

A scheduling graph is a directed graph denoted by $(\mathcal{M}_T, \mathcal{E}_T)$ defined as follows:

- \mathcal{M}_T is the collection of all independent sets of $\mathcal{N}^T.$
- \mathcal{E}_T is the collection of all independent sets of $\mathcal{N}^{2T}.$
- $T\geq D_{\mathcal N}^*$ for binary model and $T\geq 2D_{\mathcal N}^*$ for general model.

Scheduling graphs

For $\mathcal{N}_{4,1}^{\mathsf{line}}$, $(\mathcal{M}_1,\mathcal{E}_1)$ has the vertex set $\mathcal{M}_1=\{v_i,i=0,1,\ldots,8\}$ where

$$
v_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, v_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},
$$

$$
v_5 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, v_6 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, v_7 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, v_8 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix},
$$

The adjacency matrix of \mathcal{E}_1

- A path in scheduling graph $(\mathcal{M}_T, \mathcal{E}_T)$ is a sequence of binary matrices $A=(A_0,A_1,\ldots)$ where any $(A_i,A_{i+1})\in \mathcal{E}_T.$
- A cycle is a path in scheduling graph, where the first and the last matrixs are the only repeated matrix.
- For general network model, when $T\geq 2D_{\mathcal{N}}^*$, a collision-free schedule S can be equivalent to a directed path in a schedule graph $(\mathcal{M}_T, \mathcal{E}_T)$. When the network is binary, $T\geq D^*_\mathcal{N}$ is sufficient.
- A collision-free, periodic schedule S forms a closed path in $(\mathcal{M}_T, \mathcal{E}_T)$.
- A closed path can be decomposed into a sequence of (not necessarily distinct) cycles⁶.

Rate region can be characterized by cycles in scheduling graph.

⁶ Petra Gleiss, Josef Leydold, and Peter Stadler. "Circuit bases of strongly connected digraphs". In: Discussiones Mathematicae Graph Theory 2.23 (2003), pp. 241–260.

Rate Region by cycles in scheduling graph

• Let $cycle(\mathcal{G})$ be the set of cycles in a graph \mathcal{G} .

o Define

$$
\mathcal{R}^{(\mathcal{M}_T, \mathcal{E}_T)} = \text{conv}(\{R_C : C \in \text{cycle}(\mathcal{M}_T, \mathcal{E}_T)\}),
$$

As $(\mathcal{M}_T,\mathcal{E}_T)$ is finite, $\text{cycle}(\mathcal{M}_T,\mathcal{E}_T)$ is finite and hence $\mathcal{R}^{(\mathcal{M}_T,\mathcal{E}_T)}$ is a closed set.

Theorem

For a network $\mathcal N$ with general model and any integer $T\ge 2D^*_{\mathcal N}$, $\mathcal{R}^\mathcal{N}=\mathcal{R}^{(\mathcal{M}_T,\mathcal{E}_T)}.$ When network \mathcal{N} is binary, $T\geq D_\mathcal{N}^*$ is sufficient. The rate region achieved by framed scheduling can be characterized using independent sets of directed graph $(\mathcal{L}, \mathcal{I})$. An independent set of directed graph $(\mathcal{L}, \mathcal{I})$ is equivalent with a 1-cycle in $(\mathcal{M}_1, \mathcal{E}_1)$.

Theorem

For a network
$$
\mathcal{N} = (\mathcal{L}, \mathcal{I}, D_{\mathcal{L}}),
$$

$$
\mathcal{R}^{(\mathcal{L}, \mathcal{I})} = \text{conv}(\{R_C : C \text{ is a 1-cycle in } (\mathcal{M}_1, \mathcal{E}_1)\})
$$
 and

$$
\mathcal{R}^{(\mathcal{L},\mathcal{I})}\subset \mathcal{R}^{\mathcal{N}}\subset \mathcal{R}^{(\mathcal{M}_1,\mathcal{E}_1)}.
$$

[Algorithms for Cycles in Scheduling Graph](#page-27-0)

- Enumerating all the maximal independent sets of \mathcal{N}^{2T} to calculate \mathcal{M}_T and \mathcal{E}_T .
- Using Johnson's algorithm 7 to enumerate all the cycles in $(\mathcal{M}_T, \mathcal{E}_T).$

⁷Donald B Johnson. "Finding all the elementary circuits of a directed graph". In: SIAM Journal on Computing 4.1 (1975), pp. 77–84.

Table: The computation time for enumerating all the cycles using Johnson's algorithm.

Table: Run Johnson's algorithm for $(\mathcal{M}_1, \mathcal{E}_1)$ of $\mathcal{N}_{6,1}^{\mathsf{line}}$. The table lists the cycle length range of a major fraction of cycles found during different running periods.

By our simulation results, most dominating vectors are achieved by short schedules, i.e., short cycles in (M_1, \mathcal{E}_1) .

- Although *isomorphism* and *connectivity* can be used to reduce complexity in some special case.⁸
- In the case that $(\mathcal{M}_T, \mathcal{E}_T)$ is a complete graph, $\eta = 2^{|\mathcal{M}_T|}$, the computational complexity is double exponential in the network of size $|\mathcal{L}| \times T$.
- We want some algorithms more efficient and incremental.

^{8&}lt;br>**8 James B Orlin. "Some problems on dynamic/periodic graphs"**. In: Progress in Combinatorial Optimization. W. R. Pulleyblank, Ed. Orlando, FL: Academic Press, 1984, pp. 273–293.

- \bullet $A \preccurlyeq B$ if all the entries of A are not larger than the corresponding entries of B at the same positions.
- For a set A with partial order \succcurlyeq , we write $\max_{\succcurlyeq} A$ as the smallest subset β of $\mathcal A$ such that any element of $\mathcal A$ is dominated by certain elements of β .
- A path(cycle) is said to be *maximal* if it is not dominated by any other path(cycle) of the same length in scheduling graph.

$$
\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \preccurlyeq \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}
$$

We can represent \mathcal{E}_T more concisely using $\mathcal{E}^* = \max_{\succcurlyeq} \mathcal{E}_T$, which is the collection of maximal independent sets of $\mathcal{N}^{2T}.$ \mathcal{E}^* can be represented by the adjacent matrix.

- Maximalpath: Enumerating the maximal paths incrementally.
- Path2cycle: Finding all cycles dominated by a path.

Example

Consider the network $\mathcal{N}_{4,1}^{\mathsf{line}}$. For $k=1,\ldots,4$, we list the number of maximal paths and the total number of length-k paths in (M_1, \mathcal{E}_1) in the following table:

Table: Evaluations of the cost of enumerating all the cycles of given lengths with Algorithm A. (If the time cost is within 1 second, we write as 1 second)

- Using existing algorithm (e.g. depth-first search) to enumerate all the paths of $(\mathcal{M}^*, \mathcal{E}^*)$ up to length k .
- For each path, we use Path2cycle to find cycles dominated by the path.

Algorithm results: multihop line network

Algorithm results: multihop line network

$$
r_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, r_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, r_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, r_4 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}
$$

$$
\mathcal{R}^{\mathcal{N}_{4,1}^{\text{line}}}= \text{conv}(r_1, r_2, r_3, r_4).
$$

$$
\mathcal{R}_{\text{framed}}^{\mathcal{N}_{4,1}^{\text{line}}} = \text{conv}(r_1,r_2,r_3).
$$

Algorithm results: multihop line network

Figure: Node transmitting and receiving states in $\mathcal{N}_{4,1}^{\text{line}}$.

- Provided a fundamental theoretic guidance for network scheduling research, and may motivate many further researches.
- The essential problem: independent sets of a periodic graph.
- Connect periodical independent sets with cycles in scheduling graphs.
- Simplifying the computation costs of enumerating cycles by exploring dominance property.