Wireless Link Scheduling with Propagation Delays

LIU Yanxiao(Michael), first-year Ph.D student

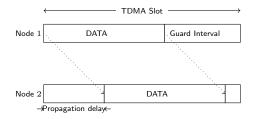
The Chinese University of Hong Kong. Co-work with Prof. YANG Shenghao, Dr. MA Jun and undergraduate students FAN Yijun, LIU Litong, all in CUHK(SZ).

April 4, 2022

Guideline

- Finished works:
 - Theoretical framework of link scheduling problems with propagation delays.
 - Graphical characterization of network scheduling: cycles and maximal independent sets of graphs.
 - Sefficient algorithms exploiting nature of rate regions(target).
- Ongoing works:
 - Exact characterization of rate regions of line networks.
 - Over a systematic schemes to find inner and outer bounds of rate regions.
 - Relationship with discrete(time-slotted) scheduling and continuous scheduling.
 - Ontinuity of rate regions.

	Underwater acoustic	Satellite	5G (Millimeter wave)	4G
Propagation delay	3.3s	0.12s	$0.001 { m ms}$	0.033ms
Frame size	10 s	0.5s	10 ms	10 ms
Propagation speed	1.5 km/s	$3 imes 10^5 {\rm km/s}$	$3 imes 10^5 { m km/s}$	$3 imes 10^5 { m km/s}$
Transmission range	3km	$3.6\times 10^4 \rm km$	0.3km	10km



Early works

- Early works fight with propagation delay to improve framed scheduling and achieved very limited gains.
- Some researches take use of propagation delays in underwater MAC¹²³ and achieve higher throughput than framed scheduling.
- Some researches model it to optimization problems.

In an N-node wireless network where any two links can generate collisions to each other. Chitre⁴ demonstrate thats:

- The optimal schedule is periodic .
- The upper bound of throughput with propagation delay is N/2.
- The upper bound of throughput with zero propagation delay is 1.

¹Borja Peleato and Milica Stojanovic. "Distance aware collision avoidance protocol for ad-hoc underwater acoustic sensor networks". In: *IEEE Communications Letters* 11.12 (2007), pp. 1025–1027.

²Kurtis Kredo II, Petar Djukic, and Prasant Mohapatra. "STUMP: Exploiting position diversity in the staggered TDMA underwater MAC protocol". In: *INFOCOM 2009, IEEE.* IEEE. 2009, pp. 2961–2965.

³Hai-Heng Ng, Wee-Seng Soh, and Mehul Motani. "BiC-MAC: Bidirectional-concurrent MAC protocol with packet bursting for underwater acoustic networks". In: OCEANS 2010 MTS/IEEE SEATTLE. IEEE. 2010, pp. 1–7.

⁴Mandar Chitre, Mehul Motani, and Shiraz Shahabudeen. "Throughput of networks with large propagation delays". In: *IEEE Journal of Oceanic Engineering* 37.4 (2012), pp. 645–658.

LIU Yanxiao(Michael) (CUHK)

- **Rate region** can help understanding network resource allocation issues like rate control, power control and routing.
- In traditional framed scheduling, the rate region of link scheduling is taking the convex hull of all independent sets of a finite collision graph indicting the collision constraints between links.
- No existing works have given such a similar rate region in network with propagation delays.

- 2 Rate Region Characterization
- 3 Algorithms for Cycles in Scheduling Graph
- 4 Rate Region of Line Networks

Network Model and Scheduling Rate Region

The network model is a weighted directed hypergraph: $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D_{\mathcal{L}})$:

- \mathcal{L} is the vertex set denoting links;
- $\mathcal I$ is the set of hyperedges denoting the collision relations among links;
- $D_{\mathcal{L}}$ is an $|\mathcal{L}| \times |\mathcal{L}|$ integer valued matrix with each entry $D_{\mathcal{L}}(l, l')$ specifying the weight from l to l'.

- A (communication) link is a pair (s, r) where $1 \le s \ne r \le N$ indicating the transmitting and receiving nodes, respectively.
- Each link l is associated with a subset $\mathcal{I}(l)$ of $2^{\mathcal{L}}$, called the *collision* set of l. Each subset of links ϕ in the collision set $\mathcal{I}(l)$ may cause collision with l.

- When the collision set $\mathcal{I}(l)$ satisfies for any $\phi \in \mathcal{I}(l)$, $|\phi| = 1$, the collision set is called binary.
- When the collision set is binary, the network is binary model and $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D_{\mathcal{L}})$ is a weighted directed graph.
- When the collision set is non-binary, the network is general model and $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D_{\mathcal{L}})$ is a weighted directed hypergraph.

- $D_{\mathcal{L}}(l, l') = D(\mathbf{s}_l, \mathbf{r}_l) D(\mathbf{s}_{l'}, \mathbf{r}_l)$, where $D(i, j) \in \mathbb{Z}^+$ denotes the signal propagation delay from node *i* to node *j*.
- It is sufficient for us to check collisions using $D_{\mathcal{L}}$.

Network model of multihop line network $\mathcal{N}_{L,K}^{\mathsf{line}}$

- The network has nodes indexed by $1, \ldots, L+1$.
- The link set

$$\mathcal{L} = \{ l_i \triangleq (i, i+1), i = 1, \dots, L \}.$$

• The collision set of link l_i is

$$\mathcal{I}(l_i) = \{l_j : j \neq i, |j - i - 1| \le K\}.$$

 The link-wise delay matrix D_L of the L-length, K-hop collision line network has

$$D_{\mathcal{L}}(l_i, l_j) = D(i, i+1) - D(j, i+1) = 1 - |j - i - 1|.$$

Network model of multihop line network

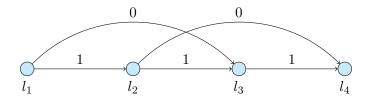
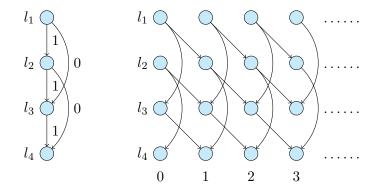


Figure: The graphical representation of $\mathcal{N}_{4,1}^{\text{line}}$.

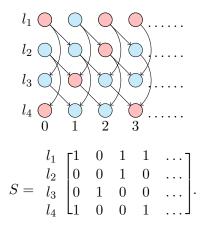
The (directed) periodic graph⁵ \mathcal{N}^{∞} induced by network \mathcal{N} :



⁵James B Orlin. "Some problems on dynamic/periodic graphs". In: *Progress in Combinatorial Optimization*. W. R. Pulleyblank, Ed. Orlando, FL: Academic Press, 1984, pp. 273–293.

Collision-free schedule and independent set

A collision-free schedule on ${\cal N}$ indicates an independent set of ${\cal N}^\infty$ induced by ${\cal N}.$



• For a network \mathcal{N} , denote for a collision free schedule S and a link l

$$R_S^{\mathcal{N}}(l) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} S(l,t),$$

- We call $R_S^{\mathcal{N}} = (R_S^{\mathcal{N}}(l), l \in \mathcal{L})$ the rate vector of S.
- The collection $\mathcal{R}^{\mathcal{N}}$ of all the achievable rate vectors is called the rate region of $\mathcal{N}.$

- For a network \mathcal{N} , the rate region $\mathcal{R}^{\mathcal{N}}$ can be achieved using collision-free, periodic schedules only.
- Define the *character* of the network $\mathcal N$ as:

$$D_{\mathcal{N}}^* = \max_{l \in \mathcal{L}} \max_{\phi \in \mathcal{I}(l)} \max_{l' \in \phi} |D_{\mathcal{L}}(l, l')|.$$

- Define \mathcal{N}^T as the subgraph of \mathcal{N}^∞ with the vertex set $\mathcal{L} \times \{0, 1, \dots, T-1\}.$
- Define $\mathcal{R}^{\mathcal{N}^T}$ as the convex hull of the rate vectors of all the independent sets of \mathcal{N}^T .

Theorem

For a network \mathcal{N} ,

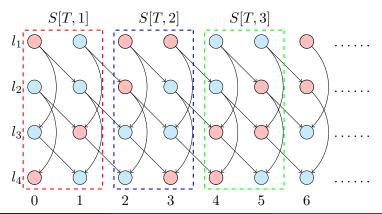
$$\mathcal{R}^{\mathcal{N}} = \text{closure}\left(\cup_{T=1,2,\dots} \frac{T}{T+D_{\mathcal{N}}^*} \mathcal{R}^{\mathcal{N}^T}\right),\,$$

where closure(A) is the closure of set A.

Rate Region Characterization

Conditional independence property

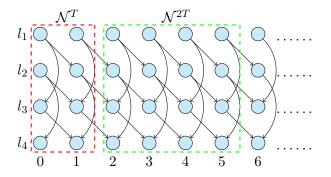
- Consider S[T, k] as the submatrix of S with cols $kT, \ldots, (k+1)T-1$.
- Whether S[T,2] is collision free is only affected by S[T,1].
- Given S[T,2], S[T,1] and S[T,3] do not affect the collision of each part when T is sufficiently large.
- We are dealing with independent sets of the graph.



Scheduling graphs

A scheduling graph is a directed graph denoted by $(\mathcal{M}_T, \mathcal{E}_T)$ defined as follows:

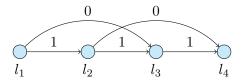
- \mathcal{M}_T is the collection of all independent sets of \mathcal{N}^T .
- \mathcal{E}_T is the collection of all independent sets of \mathcal{N}^{2T} .
- $T \geq D^*_{\mathcal{N}}$ for binary model and $T \geq 2D^*_{\mathcal{N}}$ for general model.



Scheduling graphs

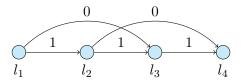
For $\mathcal{N}_{4,1}^{\mathsf{line}}$, $(\mathcal{M}_1, \mathcal{E}_1)$ has the vertex set $\mathcal{M}_1 = \{v_i, i = 0, 1, \dots, 8\}$ where

$$v_{0} = \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}, v_{1} = \begin{bmatrix} 1\\0\\0\\0\\1 \end{bmatrix}, v_{2} = \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}, v_{3} = \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix}, v_{4} = \begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix}, v_{5} = \begin{bmatrix} 1\\0\\0\\1\\1\\0 \end{bmatrix}, v_{6} = \begin{bmatrix} 1\\1\\0\\0\\0\\0 \end{bmatrix}, v_{7} = \begin{bmatrix} 0\\1\\1\\0\\0\\1\\0 \end{bmatrix}, v_{8} = \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix},$$



The adjacency matrix of \mathcal{E}_1

	v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
v_0	Γ1	1	1	1	1	1	1	1	17
v_1	1	1	0	1	1	1	0	0	1
v_2	1	1	1	0	1	1	1	0	0
v_3	1	1	1	1	0	0	1	1	0
v_4	1	1	1	1	1	1	1	1	1
v_5	1	1	0	1	1	1	0	0	1
v_6	1	1	0	0	1	1	0	0	0
v_7	1	1	1	0	0	0	1	0	0
v_8	$\lfloor 1$	1	1	1	0	0	1	1	0



•

- A path in scheduling graph $(\mathcal{M}_T, \mathcal{E}_T)$ is a sequence of binary matrices $A = (A_0, A_1, \ldots)$ where any $(A_i, A_{i+1}) \in \mathcal{E}_T$.
- A cycle is a path in scheduling graph, where the first and the last matrixs are the only repeated matrix.
- For general network model, when $T \ge 2D_{\mathcal{N}}^*$, a collision-free schedule S can be equivalent to a directed path in a schedule graph $(\mathcal{M}_T, \mathcal{E}_T)$. When the network is binary, $T \ge D_{\mathcal{N}}^*$ is sufficient.

- A collision-free, periodic schedule S forms a closed path in $(\mathcal{M}_T, \mathcal{E}_T)$.
- A closed path can be decomposed into a sequence of (not necessarily distinct) cycles⁶.

Rate region can be characterized by cycles in scheduling graph.

⁶Petra Gleiss, Josef Leydold, and Peter Stadler. "Circuit bases of strongly connected digraphs". In: *Discussiones Mathematicae Graph Theory* 2.23 (2003), pp. 241–260.

Rate Region by cycles in scheduling graph

• Let $\operatorname{cycle}(\mathcal{G})$ be the set of cycles in a graph \mathcal{G} .

Define

$$\mathcal{R}^{(\mathcal{M}_T,\mathcal{E}_T)} = \operatorname{conv}(\{R_C : C \in \operatorname{cycle}(\mathcal{M}_T,\mathcal{E}_T)\}),\$$

• As $(\mathcal{M}_T, \mathcal{E}_T)$ is finite, $\operatorname{cycle}(\mathcal{M}_T, \mathcal{E}_T)$ is finite and hence $\mathcal{R}^{(\mathcal{M}_T, \mathcal{E}_T)}$ is a closed set.

Theorem

For a network \mathcal{N} with general model and any integer $T \geq 2D_{\mathcal{N}}^*$, $\mathcal{R}^{\mathcal{N}} = \mathcal{R}^{(\mathcal{M}_T, \mathcal{E}_T)}$. When network \mathcal{N} is binary, $T \geq D_{\mathcal{N}}^*$ is sufficient.

The rate region achieved by framed scheduling can be characterized using independent sets of directed graph $(\mathcal{L}, \mathcal{I})$. An independent set of directed graph $(\mathcal{L}, \mathcal{I})$ is equivalent with a 1-cycle in $(\mathcal{M}_1, \mathcal{E}_1)$.

Theorem

For a network
$$\mathcal{N} = (\mathcal{L}, \mathcal{I}, D_{\mathcal{L}})$$
,
 $\mathcal{R}^{(\mathcal{L}, \mathcal{I})} = \operatorname{conv}(\{R_C : C \text{ is a 1-cycle in } (\mathcal{M}_1, \mathcal{E}_1)\})$
and

$$\mathcal{R}^{(\mathcal{L},\mathcal{I})} \subset \mathcal{R}^{\mathcal{N}} \subset \mathcal{R}^{(\mathcal{M}_1,\mathcal{E}_1)}.$$

Algorithms for Cycles in Scheduling Graph

- Enumerating all the maximal independent sets of \mathcal{N}^{2T} to calculate \mathcal{M}_T and \mathcal{E}_T .
- Using Johnson's algorithm⁷ to enumerate all the cycles in $(\mathcal{M}_T, \mathcal{E}_T)$.

⁷Donald B Johnson. "Finding all the elementary circuits of a directed graph". In: *SIAM Journal on Computing* 4.1 (1975), pp. 77–84.

Table: The computation time for enumerating all the cycles using Johnson's algorithm.

	$\mathcal{N}_{4,1}^{line}$	$\mathcal{N}_{5,1}^{line}$	$\mathcal{N}_{6,1}^{line}$
Number of vertices in $(\mathcal{M}_1, \mathcal{E}_1)$	9	15	25
Number of edges in $(\mathcal{M}_1, \mathcal{E}_1)$	56	144	357
Computation time	0.17s	5.5 min	169.6h

Table: Run Johnson's algorithm for $(\mathcal{M}_1, \mathcal{E}_1)$ of $\mathcal{N}_{6,1}^{\text{line}}$. The table lists the cycle length range of a major fraction of cycles found during different running periods.

Running time period	$0\sim 69.4 {\rm h}$	$69.5\sim111.1 {\rm h}$	$111.2\sim 169.6 \mathrm{h}$
Cycle length range for 99% of cycles	$19\sim 25$	$11 \sim 18$	$1 \sim 11$

• By our simulation results, most dominating vectors are achieved by short schedules, i.e., short cycles in $(\mathcal{M}_1, \mathcal{E}_1)$.

	L=1	L=2	L=3	L=4	L=5
K=1		1	1,4	1,4	1,4
K=2			1,4	1,4	1,4
K=3				1,3,4	
K=4					1,4,8,10

- Although *isomorphism* and *connectivity* can be used to reduce complexity in some special case.⁸
- In the case that (M_T, E_T) is a complete graph, η = 2^{|M_T|}, the computational complexity is double exponential in the network of size |L| × T.
- We want some algorithms more efficient and incremental.

⁸James B Orlin. "Some problems on dynamic/periodic graphs". In: *Progress in Combinatorial Optimization*. W. R. Pulleyblank, Ed. Orlando, FL: Academic Press, 1984, pp. 273–293.

- *A* ≼ *B* if all the entries of *A* are not larger than the corresponding entries of *B* at the same positions.
- For a set A with partial order ≽, we write max_≽ A as the smallest subset B of A such that any element of A is dominated by certain elements of B.
- A path(cycle) is said to be *maximal* if it is not dominated by any other path(cycle) of the same length in scheduling graph.

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \preccurlyeq \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

We can represent \mathcal{E}_T more concisely using $\mathcal{E}^* = \max_{\geq} \mathcal{E}_T$, which is the collection of maximal independent sets of \mathcal{N}^{2T} . \mathcal{E}^* can be represented by the adjacent matrix.

Example				
	$\begin{array}{c} v_5 \\ v_5 \\ v_6 \\ v_7 \\ v_8 \end{array} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	$v_6 \\ 0 \\ 0 \\ 1 \\ 1$	$v_7 \\ 0 \\ 0 \\ 0 \\ 1$	$\begin{bmatrix} v_8 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$

- Maximalpath: Enumerating the maximal paths incrementally.
- Path2cycle: Finding all cycles dominated by a path.

Example

Consider the network $\mathcal{N}_{4,1}^{\text{line}}$. For $k = 1, \ldots, 4$, we list the number of maximal paths and the total number of length-k paths in $(\mathcal{M}_1, \mathcal{E}_1)$ in the following table:

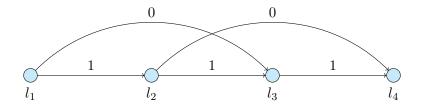
	k = 1	k = 2	k = 3	k = 4
Number of length- k maximal paths	6	16	64	180
Number of length- k paths in $(\mathcal{M}_1,\mathcal{E}_1)$	56	363	2357	152633

Table: Evaluations of the cost of enumerating all the cycles of given lengths with Algorithm A. (If the time cost is within 1 second, we write as 1 second)

Cycle 1 length	2	3	4	5	6	7	8	9	10
$\mathcal{N}_{4,1}^{line} \ 1s$	1s	1s	1s	1s	1s	1s	2.76s	29.2s	-
$\mathcal{N}_{5.1}^{line}$ $1s$	1s	1s	1s	1s	1s	$1.08 \mathrm{s}$	16.1s	$6.3 \min$	2.4h
$\mathcal{N}_{6,1}^{line} \ 1$ s	1s	1s	1s	1s	1s	10.1	$4.37 {\sf min}$	1.78h	2.29 d

- Using existing algorithm (e.g. depth-first search) to enumerate all the paths of $(\mathcal{M}^*, \mathcal{E}^*)$ up to length k.
- For each path, we use Path2cycle to find cycles dominated by the path.

Algorithm results: multihop line network



Algorithm results: multihop line network

$$\begin{split} r_1 &= \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, r_2 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, r_3 = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, r_4 = \begin{bmatrix} 1/2\\1/2\\1/2\\1/2\\1/2 \end{bmatrix}\\ \mathcal{R}^{\mathcal{N}_{4,1}^{\text{line}}} &= \operatorname{conv}(r_1, r_2, r_3, r_4). \end{split}$$

$$\mathcal{R}_{\mathsf{framed}}^{\mathcal{N}_{4,1}^{\mathsf{line}}} = \operatorname{conv}(r_1, r_2, r_3).$$

Algorithm results: multihop line network

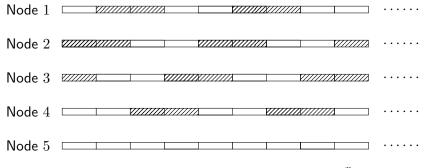


Figure: Node transmitting and receiving states in $\mathcal{N}_{4.1}^{\text{line}}$.

- Provided a fundamental theoretic guidance for network scheduling research, and may motivate many further researches.
- The essential problem: independent sets of a periodic graph.
- Connect periodical independent sets with cycles in scheduling graphs.
- Simplifying the computation costs of enumerating cycles by exploring dominance property.