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Introduction
Local differential privacy (DP).
A local randomizer A : X → Z satisfies local DP if for
any x, x′ ∈ X and measurable set S ⊂ Z ,

Pr {A(x) ∈ S} ≤ eε · Pr {A(x′) ∈ S} + δ.

Compression with public randomness.
A local DP mechanism A can be compressed in b bits if

• A(x) d= M (K(x, R), R) where R is public
randomness;

• K(x, R) can be encoded by a prefix-free code with
expected length at most b;

• (K(x, R), R) jointly satisfies local DP.
Prior works. It is known that every ε-local DP mecha-
nism can be compressed in O(ε) bits with small distortion
[1, 2]; however, the compressed schemes are approximate.

Our contributions. We introduce Poisson private rep-
resentation (PPR) that exactly simulates any local ran-
domizer within O(ε) bits while ensuring local DP.

Poisson Functional Representation
Let (Ti)i be a Poisson process with rate 1 (i.e., T1, T2 −
T1, T3 − T2, . . .

i.i.d.∼ Exp(1)), independent of Zi
i.i.d.∼ Q.

Then (Zi, Ti)i is a Poisson process with intensity measure
Q × λ[0,∞).
Fix any distribution P over Z that is absolutely continu-
ous with respect to Q. Let

T̃i := Ti ·
(dP

dQ
(Zi)

)−1
.

Then (Zi, T̃i) is a Poisson process with intensity measure
P × λ[0,∞) [3,4,5].
Theorem (Poisson functional representation [3]).
Let Z = ZK be with the smallest associated T̃K, i.e.,
K := arg mini T̃i and Z := ZK. Then Z ∼ P .

Poisson Private Representation (PPR)

Algorithm 1 (PPR).
Input: private data x ∈ X , (ε, δ)-local DP mechanism
P (·|x), reference distribution Q(·), compression
parameter α > 1.
(a) Generate public random variables

(Zi)i=1,2,...
i.i.d.∼ Q(·).

(b) The local user knows (Zi)i, x, P (·|x) and performs:
(1) Generate the Poisson process (Ti)i with rate 1.

(2) Computes T̃i ≜ Ti ·
(

dP
dQ (Zi)

)−1
.

(3) Generates K ≜ K (x; (Zi, Ti)i) ∈ Z+ with

Pr (K = k) =
T̃ −α

k∑∞
i=1 T̃ −α

i

.

(4) Compresses and sends K ∈ Z+ (e.g., with Elias
delta code).
(c) The server, which knows (Zi)i, K, outputs Z = ZK.

Proposition 1 (Exactness).

The output Z of PPR follows P (·|x) exactly.

Theorem 2 (Compression size).
For PPR with α > 1, message K ∈ Z+ satisfies

E [log2 K] ≤ DKL (P (·|x)∥Q(·))
+ log2(3.56)/ min ((α − 1)/2, 1) .

K can be encoded by a prefix-free code with expected
length approximately DKL(P (·|x)∥Q(·)) bits within a
logarithmic gap. If X is random, the expected length
is approximately I(X ; Z) which is almost optimal.
As a result, when P (·|x) satisfies ε-local DP, then the
compression size is at most

ℓ + log2 (ℓ + 1) + 2 (bits),
where ℓ ≜ ε log2 e + log2(3.56)/ min ((α − 1)/2, 1).

Remarks:
• The exactness of PPR follows from the Poisson functional representation.
• While the algorithm requires an infinite number of samples, it can be reparameterized and terminates in finite steps.
• PPR can also be used to compress central DP mechanisms and offer (weaker) local DP guarantees.

Privacy Guarantees of PPR
Theorem 3 (ε-DP of PPR).
If the mechanism P (·|x) is ε-DP, then PPR P(Zi)i,K|x with α > 1 is 2αε-DP.
Theorem 4 ((ε, δ)-DP of PPR).
If the mechanism P (·|x) is (ε, δ)-DP, then PPR P(Zi)i,K|x with α > 1 is (2αε, 2δ)-DP.
Theorem 5 (Tighter (ε, δ)-DP of PPR).

If the mechanism P (·|x) is (ε, δ)-DP, then PPR P(Zi)i,K|x with α > 1 is (αε + ε̃, 2(δ + δ̃))-DP, for every ε̃ ∈ (0, 1] and
δ̃ ∈ (0, 1/3] satisfying

α ≤ e−4.2δ̃ε̃2/(− ln δ̃) + 1.

Applications
PPR-compressed Gaussian mechanism.
Consider the Gaussian mechanism

PZ|X(·|x) = N
(

x,
σ2

n
Id

)
and the reference distribution

Q = N
(

0,

(
C2

d
+ σ2

n

)
Id

)
,

where σ ≥ C
√

2 ln (1.25/δ)/ε. Let Zi be the output of
PPR applied on PZ|X(·|xi). Then it holds that
• µ̂(Zn) := 1

n

∑
i Zi is unbiased w.r.t. the true mean.

• µ̂(Zn) satisfies (ε, δ)-central DP.
• PPR satisfies (2α

√
nε, 2δ)-local DP.

• The average per-client communication cost is at most

O

(
d log

(
nε2

d log(1/δ) + 1

)
+ 1

)
bits.
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