Universal Exact Compression of Differentially Private Mechanisms

Introduction

Local differential privacy (DP).

A local randomizer $\mathcal{A}: \mathcal{X} \rightarrow \mathcal{Z}$ satisfies local DP if for any $x, x' \in \mathcal{X}$ and measurable set $\mathcal{S} \subset \mathcal{Z}$,

 $\Pr \{ \mathcal{A}(x) \in \mathcal{S} \} \leq e^{\varepsilon} \cdot \Pr \{ \mathcal{A}(x') \in \mathcal{S} \} + \delta.$

- \bullet $\mathcal{A}(x)$ d $\stackrel{\text{d}}{=} \mathcal{M}\left(K(x,R),R\right)$ where R is public randomness;
- *K*(*x, R*) can be encoded by a prefix-free code with expected length at most *b*;
- (*K*(*x, R*)*, R*) jointly satisfies local DP.

Prior works. It is known that every *ε*-local DP mechanism can be compressed in *O*(*ε*) bits with small distortion $[1, 2]$; however, the compressed schemes are approximate.

Compression with public randomness.

A local DP mechanism A can be compressed in *b* bits if

Fix any distribution P over $\mathcal Z$ that is absolutely continuous with respect to *Q*. Let

Theorem (Poisson functional representation [3]). Let $Z = Z_K$ be with the smallest associated T_K , i.e., $K := \arg \min_i \tilde{T}_i$ and $Z := Z_K$. Then $Z \sim P$.

Yanxiao Liu 1 Wei-Ning Chen² Ayfer Özgür² Cheuk Ting Li¹

¹The Chinese University of Hong Kong ²Stanford University

Input: private data *x* ∈ X , (*ε, δ*)-local DP mechanism $P(\cdot|x)$, reference distribution $Q(\cdot)$, compression parameter $\alpha > 1$.

Our contributions. We introduce Poisson private representation (PPR) that exactly simulates any local randomizer within *O*(*ε*) bits while ensuring local DP.

Poisson Functional Representation

Let $(T_i)_i$ be a Poisson process with rate 1 (i.e., $T_1, T_2 T_1, T_3 - T_2, \ldots$ i.i.d. $\widetilde{\sim}$ $\mathrm{Exp}(1)$), independent of Z_i i.i.d. ∼ *Q*. Then $(Z_i,T_i)_i$ is a Poisson process with intensity measure $Q \times \lambda_{[0,\infty)}$.

(4) Compresses and sends $K \in \mathbb{Z}_+$ (e.g., with Elias delta code).

(c) The server, which knows $(Z_i)_i, K$, outputs $Z = Z_K$.

$$
\tilde{T}_i:=T_i\cdot\Big(\frac{\mathrm{d}P}{\mathrm{d}Q}(Z_i)\Big)^{-1}.
$$

Then (Z_i, \tilde{T}_i) is a Poisson process with intensity measure $P \times \lambda_{[0,\infty)}$ [3,4,5].

- The exactness of PPR follows from the Poisson functional representation.
- While the algorithm requires an infinite number of samples, it can be reparameterized and terminates in finite steps.
- PPR can also be used to compress central DP mechanisms and offer (weaker) local DP guarantees.

Poisson Private Representation (PPR)

Algorithm 1 (PPR).

(a) Generate public random variables

$$
(Z_i)_{i=1,2,...} \stackrel{\text{i.i.d.}}{\sim} Q(\cdot).
$$

(b) The local user knows $(Z_i)_i$, x , $P(\cdot|x)$ and performs:

- (1) Generate the Poisson process $(T_i)_i$ with rate 1.
- (2) Computes $\tilde{T}_i \triangleq T_i$. $\int dP$ $\frac{dP}{dQ}\left(Z_i\right)$ \bigwedge ⁻¹
- (3) Generates $K \triangleq K(x; (Z_i, T_i)_i) \in \mathbb{Z}_+$ with
- *n* $\sum_i Z_i$ is unbiased w.r.t. the true mean.
- $\cdot \hat{\mu}(Z^n)$ satisfies (ε, δ) -central DP.

• The average per-client communication cost is at most

.

- \bullet $\hat{\mu}(Z^n) := \frac{1}{n}$
-
- PPR satisfies $(2\alpha\sqrt{n}\varepsilon, 2\delta)$ -local DP. √
-

\n- 1 is
$$
2\alpha \varepsilon
$$
-DP.
\n- $\alpha > 1$ is $(2\alpha \varepsilon, 2\delta)$ -DP.
\n- $\alpha > 1$ is $(\alpha \varepsilon + \tilde{\varepsilon}, 2(\delta + \tilde{\delta}))$ -DP, for every $\tilde{\varepsilon}$.
\n

 $\theta \in (0,1]$ and

$$
\Pr\left(K = k\right) = \frac{\tilde{T}_k^{-\alpha}}{\sum_{i=1}^{\infty} \tilde{T}_i^{-\alpha}}.
$$

[1] Feldman and Talwar, "Lossless compression of efficient private local randomizers," ICML 2021.

Proposition 1 (Exactness).

The output Z of PPR follows $P(\cdot|x)$ exactly.

Theorem 2 (Compression size).

For PPR with $\alpha > 1$, message $K \in \mathbb{Z}_+$ satisfies $\mathbb{E} [\log_2 K] \leq D_{\mathsf{KL}}(P(\cdot|x)||Q(\cdot))$ $+\log_2(3.56)/\min((\alpha-1)/2,1)$.

K can be encoded by a prefix-free code with expected length approximately $D_{\mathsf{KL}}(P(\cdot|x)||Q(\cdot))$ bits within a logarithmic gap. If *X* is random, the expected length is approximately *I*(*X*;*Z*) which is almost optimal. As a result, when $P(\cdot|x)$ satisfies ε -local DP, then the compression size is at most

$$
\ell + \log_2(\ell + 1) + 2
$$
 (bits),
where $\ell \triangleq \varepsilon \log_2 e + \log_2(3.56) / \min((\alpha - 1)/2, 1)$.

Remarks:

Privacy Guarantees of PPR

Theorem 3 (*ε***-DP of PPR).**

If the mechanism $P(\cdot|x)$ is ε -DP, then PPR $P_{(Z_i)_i,K|x}$ with $\alpha > 1$ is $2\alpha\varepsilon$ -DP. **Theorem 4 (** (ε, δ) -DP of PPR).

If the mechanism $P(\cdot|x)$ is (ε,δ) -DP, then PPR $P_{(Z_i)_i,K|x}$ with $\alpha>1$ is $(2\alpha\varepsilon,2\delta)$ -DP.

Theorem 5 (Tighter (*ε, δ*)**-DP of PPR).**

If the mechanism $P(\cdot|x)$ is (ε,δ) -DP, then PPR $P_{(Z_i)_i,K|x}$ with $\delta \in (0, 1/3]$ satisfying

$$
\alpha \le e^{-4.2} \tilde{\delta} \tilde{\varepsilon}^2 / (-\ln \tilde{\delta}) + 1.
$$

Applications

PPR-compressed Gaussian mechanism.

Consider the Gaussian mechanism

$$
P_{Z|X}(\cdot|x) = \mathcal{N}\left(x, \frac{\sigma^2}{n}\mathbb{I}_d\right)
$$

and the reference distribution

$$
Q = \mathcal{N}\left(0, \left(\frac{C^2}{d} + \frac{\sigma^2}{n}\right) \mathbb{I}_d\right),
$$

where $\sigma \geq C \sqrt{2 \ln \left(1.25/\delta \right)}/\varepsilon.$ Let Z_i be the output of PPR applied on $P_{Z|X}(\cdot|x_i)$. Then it holds that

$$
O\left(d\log\left(\frac{n\varepsilon^2}{d\log(1/\delta)+1}\right)+1\right) \text{ bits.}
$$

- Differentially Private Mechanisms," AISTATS 2022.
- [2] Shah, Chen, Balle, Kairouz and Theis, "Optimal Compression of Locally
- [3] Li and El Gamal, "Strong Functional Representation Lemma and Applications to Coding Theorems," IEEE Trans. Inf. Theory, 2018.
- [4] Li and Anantharamm, "A unified framework for one-shot achievability via the Poisson matching lemma," IEEE Trans. Inf. Theory, 2021.
- [5] Maddison, "A Poisson process model for Monte Carlo," Perturbation, Optimization, and Statistics, 2016.

