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Overview

Background
• In modern data science, large amounts of high-quality data are generated

with personal information, often by edge devices (e.g., your messages,
photos and videos).

• The data are susceptible to privacy breaches.
• Differential privacy (Warner (1965); Dwork et al. (2006)) is a powerful tool

for safeguarding users’ privacy by properly randomizing the local data.
• Apart from privacy, communicating (high-dimensional) local data to the

central server is often a bottleneck in the system pipeline.

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhodnikova, S., & Smith, A. (2011). What can we learn privately?. SIAM Journal
on Computing, 40(3), 793-826.

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of
Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3 (pp. 265-284).
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Objective

We intend to answer the following fundamental question:

Practical perspective
How can we efficiently communicate privatized data?

Information-theoretic perspective
How can we exactly-compress differentially private mechanisms (which can be
viewed as a noisy channel)?

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 2
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Differential Privacy (DP)

Definition: Differentially Private Mechanisms)
Given a mechanism A which induces distribution PZ |X of Z = A(X), we say that
it satisfies (ϵ, δ)-DP if for any neighboringa (x , x ′) ∈ N and S ⊆ Z, it holds that

P(Z ∈ S | X = x) ≤ eϵP(Z ∈ S | X = x ′) + δ. (1)
aWe say x , x ′ are neighboring if they differ in a single data point.

Remarks
• If a mechanism satisfies (ϵ, 0)-DP, we simply write it as ϵ-DP.

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhodnikova, S., & Smith, A. (2011). What can we learn privately?. SIAM Journal
on Computing, 40(3), 793-826.

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of
Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3 (pp. 265-284).
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Related Works

Compression of DP Mechanisms
To compress ϵ-DP mechanisms:

• For ϵ ≤ 1, Bassily and Smith (2015) showed that a single bit can simulate
any local DP randomizer with a small degradation of utility.

• Bun et al. (2019) proposed a rejection-sampling-based compression
technique, which compresses an ϵ-DP mechanism into a 10ϵ-DP mechanism.

• Feldman and Talwar (2021) proposed a distributed simulation approach
using rejection sampling with shared randomness.

• In Triastcyn et al. (2021); Shah et al. (2022), importance sampling (or more
specifically, minimum random coding (Havasi et al. (2018))) was utilized.

• All these methods are approximate, i.e., the output distribution is distorted.

Bassily, R., & Smith, A. (2015, June). Local, private, efficient protocols for succinct histograms. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing (pp. 127-135).

Bun, M., Nelson, J., & Stemmer, U. (2019). Heavy hitters and the structure of local privacy. ACM Transactions on Algorithms (TALG).
Feldman, V., & Talwar, K. (2021, July). Lossless compression of efficient private local randomizers. In International Conference on

Machine Learning (pp. 3208-3219). PMLR.
Shah, A., Chen, W. N., Balle, J., Kairouz, P., & Theis, L. (2022, May). Optimal compression of locally differentially private mechanisms.

In International Conference on Artificial Intelligence and Statistics (pp. 7680-7723). PMLR.
Triastcyn, A., Reisser, M., & Louizos, C. (2021). Dp-rec: Private & communication-efficient federated learning. arXiv:2111.05454.
Havasi, M., Peharz, R., & Hernández-Lobato, J. M. (2018). Minimal random code learning: Getting bits back from compressed model

parameters. arXiv preprint arXiv:1810.00440.
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Introduction Our Contributions Applications Summary References

Related Works: Minimal Random Coding

In Triastcyn et al. (2021); Shah et al. (2022), importance sampling (or more
specifically, minimum random coding (MRC) (Havasi et al. (2018))) was utilized.

Compressing any ϵ-DP Mechanisms by MRC (Shah et al. (2022))
• Consider an ϵ-DP mechanism PZ |X .

• Draw (Zi )i=1,2,...
iid∼ Q. Q is known to both the encoder and the decodera.

• User (encoder) transmits K ∈ [1 : N] to the server (decoder). K is drawn
according to distribution Pmrc(·) such that ZK follows PZ |X approximately.

• The distribution Pmrc is:
• ∀k ∈ [1 : N], Pmrc(k) ∝ w(k), where w(k) := PZ|X (Zk |X)

Q(Zk ) are the importance
weights.

• To communicate the index K , log N bits are required.
aThis can be achieved via a pseudorandom number generator with a known seed.

Shah, A., Chen, W. N., Balle, J., Kairouz, P., & Theis, L. (2022, May). Optimal compression of locally differentially private
mechanisms. In International Conference on Artificial Intelligence and Statistics (pp. 7680-7723). PMLR.

Triastcyn, A., Reisser, M., & Louizos, C. (2021). Dp-rec: Private & communication-efficient federated learning. arXiv:2111.05454.
Havasi, M., Peharz, R., & Hernández-Lobato, J. M. (2018). Minimal random code learning: Getting bits back from compressed model

parameters. arXiv preprint arXiv:1810.00440.
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Related Works: Minimal Random Coding

Theorem: If the mechanism PZ |X is ϵ-DP, then the compressed Pmrc is 2ϵ-DP.
Proof:

• For neighbors x , x ′ and z, since PZ |X is ϵ-DP, PZ |X (z|x) ≤ eϵPZ |X (z|x ′).
• For any (Zk)k=1,...,N and k ∈ [1 : N], we have

Pmrc
x (k)

Pmrc
x′ (k) =

PZ |X (Zk |x)
PZ |X (Zk |x ′) ×

∑
i PZ |X (Zi |x ′)/Q(Zi )∑
i PZ |X (Zi |x)/Q(Zi )

≤ eϵ ×
∑

i eϵPZ |X (Zi |x)/Q(Zi )∑
i PZ |X (Zi |x)/Q(Zi )

= e2ϵ

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 6
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Channel Simulation

As discussed above: all the mentioned existing methods are approximate (the
output distribution is distorted). How can we exactly compress DP Mechanisms?

Channel Simulation
One-shot channel simulation (a lossy compression task) aims to find the minimal
needed communication over a noiseless channel to “simulate” a channel PZ |X .

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 7



Introduction Our Contributions Applications Summary References

Channel Simulation

Channel Simulation
One-shot channel simulation (a lossy compression task) aims to find the minimal
needed communication over a noiseless channel to “simulate” a channel PZ |X .

Setting
• Suppose Alice and Bob share unlimited common randomness W .
• Alice observes X ∼ PX and sends a description M to Bob via a noiseless

channel such that Bob can generate Z (from M and W ) according to a
prescribed conditional distribution PZ |X .

• The goal is to find the minimum expected description length of M. By
X ↔ M ↔ Z conditional on W ,

E[Len(M)] ≥ H(M|W ) ≥ I(X ; Z |W ) = I(X ; Z , W ) − I(X ; W ) ≥ I(X ; Z)

C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal. Entanglement-assisted capacity of a quantum channel and the reverse
Shannon theorem. IEEE Trans. Inf. Theory, vol. 48, no. 10, pp. 2637–2655, Oct. 2002.

Harsha, P., Jain, R., mathcallester, D., & Radhakrishnan, J. (2007, June). The communication complexity of correlation. In
Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07) (pp. 10-23). IEEE.

P. Cuff. Distributed channel synthesis. IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7071–7096, Nov. 2013.
C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter. The quantum reverse Shannon theorem and resource tradeoffs for

simulating quantum channels. IEEE Trans. Inf. Theory, vol. 60, no. 3, pp. 2926–2959, May 2014.
NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 8
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Channel Simulation

Channel Simulation
• By Harsha et al. (2007) and Li and El Gamal (2018), PZ |X can be simulated

using I(X ; Z) + O(log(I(X ; Z))) bits.
• In Harsha et al. (2007), algorithms based on rejection sampling are proposed.
• Dithered quantization (Ziv (1985)) has been used to simulate an additive

noise channel in Agustsson and Theis (2020) for neural compression.
• More applications of channel simulation tools:

• Neural network compression by Havasi et al. (2018)
• Image compression via variational autoencoders by Flamich et al. (2020)
• Diffusion models with perfect realism by Theis et al. (2022)
• Differentially private federated learning by Shah et al. (2022)

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 9
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Poisson Private Representation (PPR)

Poisson Private Representation: Overview(PPR)
• In this paper, we propose a novel algorithm, called Poisson private

representation (PPR), that is designed to compress and simulate any local
randomizer while ensuring local differential privacy.

• The advantages of our PPR are as follows:
1 Universality: Unlike dithered-quantization-based approaches which can only

simulate additive noise mechanisms, PPR can simulate any local or central
DP mechanism with discrete or continuous input and output.

2 Exactness: PPR enables exact simulation, ensuring that the reproduced
distribution perfectly matches the original one, and hence the compressed
sample maintains the same statistical properties.

3 Communication efficiency: PPR compresses the output of any DP
mechanism to a size close to the theoretical lower bound I(X ; Z).

• PPR is the first universal exact compression method for DP mechanisms
with an almost-optimal compression size.

• The methods by Bassily and Smith (2015); Bun et al. (2019); Feldman and
Talwar (2021); Shah et al. (2022) are not exact.

• The methods by Harsha et al. (2007) and Li and El Gamal (2018) do not
guarantee privacy.

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 10
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Poisson Functional Representation (PFR)

To design our Poisson Private Representation, we first review the Poisson Func-
tional Representation by Li and El Gamal (2018):

Definition
Let (Ti )i be a Poisson process with rate 1 (i.e.,
T1, T2 − T1, T3 − T2, . . .

iid∼ Exp(1)), independent of Zi
iid∼ Q for i = 1, 2, . . ..

Then (Zi , Ti )i is a Poisson process with intensity measure Q × λ[0,∞), where
λ[0,∞) is the Lebesgue measure over [0, ∞). Fix any distribution P over Z that is
absolutely continuous with respect to Q. Let

T̃i := Ti ·
( dP

dQ (Zi )
)−1

. (2)

Then (Zi , T̃i )i is a Poisson process with intensity measure P × λ[0,∞)
The Poisson functional representation selects Z = ZK with the smallest
associated T̃K , i.e., let K := argmini T̃i and Z := ZK .

Li, C. T., & El Gamal, A. (2018). Strong functional representation lemma and applications to coding theorems. IEEE Transactions on
Information Theory.

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 11
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Poisson Functional Representation (PFR)

Poisson Functional Representation
• The PFR selects a sample following the target distribution P using another

distribution Q.
• It draws a random sequence (Zi )i from Q and a sequence of times (Ti )

according to a Poisson process.
• If we select Zi with the smallest Ti , the selected sample follows Q.
• To obtain a sample from P instead, we multiply the time by the factor(

dP
dQ (Zi )

)−1 so the Zi with the smallest T̃i .
• However, if one uses PFR to simulatee a DP mechanism PZ |X , with inputs

X , (Ti )i and output K , the issue is that K is a function of X and the shared
randomness (Zi , Ti )i .

• Hence a change of X may affect K in a deterministic manner, and hence the
privacy of X cannot be protected well.

Li, C. T., & El Gamal, A. (2018). Strong functional representation lemma and applications to coding theorems. IEEE Transactions on
Information Theory.

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 12
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Poisson Private Representation (PPR)

Poisson Private Representation: Construction
Input: x , (ϵ, δ)-DP mechanism PZ |X , reference distribution Q, parameter α > 1.

1 Generate shared randomness between user and server (Zi )i=1,2,...
iid∼ Q.

2 The user knows (Zi )i , x , PZ |X and performs:
1 Generate the Poisson process (Ti )i with rate 1.
2 Compute T̃i := Ti ·

(
dP
dQ (Zi )

)−1 where P := PZ |X (·|x). Take T̃i = ∞ if
dP
dQ (Zi ) = 0.

3 Generate K ∈ Z+ with

P(K = k) =
T̃ −α

k∑∞
i=1 T̃ −α

i
. (3)

4 Compress and send K (e.g., by Elias delta code).

3 The server, which observes (Zi )i and K , outputs Z = ZK .

Remarks
• While the algorithm requires infinite samples, it can be reparametrized to

terminate in finite steps.
• When α = ∞, PPR reduces to PFR.

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 13
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Poisson Private Representation (PPR): Theoretic Guarantees

Proposition: Exactness
The output Z of PPR follows PZ |X exactly.

Remarks
• Due to the exactness of PPR, it guarantees unbiasedness for tasks such as

distributed mean estimation:
1 If we only want a stand-alone privacy mechanism, we can just focus on the

privacy and utility.
2 However, if the output of the mechanism is used for downstream tasks (e.g.,

after receiving information from clients, the server sends aggregated mean to
data analysts), having an exact distribution allows more precise (central)
privacy and utility guarantees.

• PPR is universal: only the encoder needs to know the simulated mechanism
PZ |X .

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 14
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Poisson Private Representation (PPR): Theoretic Guarantees

Theorems: Privacy Guarantee
1 Theorem 4.5 (ϵ-DP of PPR): If the mechanism PZ |X is ϵ-DP, then PPR

P(Zi )i ,K |X with parameter α > 1 is 2αϵ-DP.
2 Theorem 4.6 ((ϵ, δ)-DP of PPR): If PZ |X is (ϵ, δ)-DP, then PPR P(Zi )i ,K |X

with parameter α > 1 is (2αϵ, 2δ)-DP.

Theorems: Privacy Guarantee
Theorem 4.8 (Tighter (ϵ, δ)-DP of PPR): If PZ |X is (ϵ, δ)-DP, then PPR
P(Zi )i ,K |X with parameter α > 1 is (αϵ + ϵ̃, 2(δ + δ̃))-DP, for every ϵ̃ ∈ (0, 1] and
δ̃ ∈ (0, 1/3] that satisfy α ≤ e−4.2δ̃ϵ̃2/(− ln δ̃) + 1.

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 15
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Privacy Guarantee on Compressing ϵ-DP Mechanisms

• If the mechanism PZ |X is ϵ-DP, then PPR P(Zi )i ,K |X is 2αϵ-DP for α > 1.
• Proof: For j = 1, 2,

1 for neighbor x1, x2, suppose Pj := PZ |X (·|xj ) and T̃j,i := Ti
/

( dPj
dQ (Zi )).

2 Since PZ |X is ϵ-DP, we know

e−ϵ dP2
dQ

(z) ≤
dP1
dQ

(z) ≤ eϵ dP2
dQ

(z).

and hence e−ϵT̃2,i ≤ T̃1,i ≤ eϵT̃2,i .
3 Suppose Kj is PPR’s output applied on Pj . For k ∈ Z+, almost surely,

P(K1 = k|(Zi , Ti )i ) =
T̃ −α

1,k∑∞
i=1 T̃ −α

1,i
≤

eαϵT̃ −α
2,k∑∞

i=1 e−αϵT̃ −α
1,i

= e2αϵP(K2 = k|(Zi , Ti )i ).

4 For any measurable S ⊆ Z∞ × Z≥0,
P(((Zi )i , K1) ∈ S) = E[P(((Zi )i , K1) ∈ S|(Zi , Ti )i ))]

= E
[ ∑

k:((Zi )i ,k)∈S

P(K1 = k|(Zi , Ti )i ))
]

≤ e2αϵE
[ ∑

k:((Zi )i ,k)∈S

P(K2 = k|(Zi , Ti )i ))
]

= e2αϵP(((Zi )i , K2) ∈ S)
NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 16
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Poisson Private Representation (PPR): Theory

Theorem: Communication efficiency
Theorem 4.3 (Compression size of PPR): For PPR with parameter α > 1,
message K satisfies

E[log2 K ] ≤ DKL(P(·|x)∥Q(·)) + log2(3.56)
min{ α−1

2 , 1}
.

As a result, when the input X ∼ PX is random, we have

E[log2 K ] ≤ I(X ; Z) + log2(3.56)
min{ α−1

2 , 1}
.

Hence, K can be encoded into I(X ; Z) + log2(I(X ; Z) + 1) + O(1) bits, close to
the theoretical lower bound I(X ; Z).

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 17
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Running Time

Running Time
• Note since E[log K ] ≈ I(X ; Z), K (and hence the running time) is at least

exponential in I(X ; Z).
• However, an exponential complexity is also needed in sampling methods

without privacy guarantee, e.g., Havasi et al. (2018) and Maddison (2016).
• By Agustsson and Theis (2020), no polynomial time general sampling-based

method exists (even without privacy constraint), if RP ̸= NP.
• Nevertheless, this is not an obstacle: I(X ; Z) for a good local DP

mechanism must be small, or the leakage of X in Z will be too largea.
• Another way to ensure a polynomial running time is to divide the data into

small chunks and apply the mechanism to each chunk separately.
aBy Cuff and Yu (2016), for an ϵ-local DP mechanism, I(X ; Z) ≤ min{ϵ, ϵ2}

Chris J Maddison. A Poisson process model for Monte Carlo. Perturbation, Optimization, and Statistics, pages 193–232, 2016.
Marton Havasi, Robert Peharz, and José Miguel Hernández-Lobato. Minimal random code learning: Getting bits back from compressed

model parameters. In 7th International Conference on Learning Representations, ICLR 2019, 2019.
Eirikur Agustsson and Lucas Theis. Universally quantized neural compression. Advances in neural information processing systems,

33:12367–12376, 2020.
Paul Cuff and Lanqing Yu. Differential privacy as a mutual information constraint. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, pages 43–54, 2016.

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 18



Introduction Our Contributions Applications Summary References

Application: Distributed Mean Estimation (DME)

Distributed Mean Estimation
• Private DME is the core sub-routine in various private and federated

optimization algorithms.
• Consider n users, each with data Xi ∈ Rd .
• They use Gaussian mechanism and send Zi ∼ N

(
Xi ,

σ2

n Id

)
to server,

where σ ≥ C
√

2 ln(1.25/δ)
ϵ

. Server estimates the mean as µ̂(Z n) = 1
n

∑
i Zi .

• Using PPR to compress the Gaussian mechanism:
• µ̂(Zn) = 1

n
∑

i Zi is unbiased, has (ϵ, δ)-central DP.
• PPR satisfies (2α

√
nϵ, 2δ)-local DP for ϵ < 1√

n .
• The average per-client communication cost is at most ℓ + log2(ℓ + 1) + 2 bits,

where

ℓ :=
d
2

log2

(C2n
dσ2 + 1

)
+ ηα ≤

d
2

log2

( nε2

2d ln(1.25/δ)
+ 1

)
+ ηα,

and ηα := (log2(3.56))/ min{(α − 1)/2, 1}.a

aThis is at least as good as O( nϵ2
log(1/δ)+1 ) in Suresh et al. (2017) and Chen et al. (2024), and is

better when n ≫ d .

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 19
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Application: Distributed Mean Estimation

Chen, W. N., Song, D., Ozgur, A., & Kairouz, P. (2024). Privacy amplification via compression:
Achieving the optimal privacy-accuracy-communication trade-off in distributed mean estimation.
Advances in Neural Information Processing Systems, 36.
NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 20
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Application: Distributed Mean Estimation

• PPR consistently achieves a smaller MSE compared to CSGM.
• The MSE reductions are significant:

• For ϵ = 1 and compressing to 50 bits, we give a 33.61% MSE reduction;
• For ϵ = 0.5 and compressing to 25 bits, we give a 22.33% MSE reduction;
• All considered mechanisms are asymptotically close to optimal.

• We emphasize that PPR provides both central and local DP guarantees.
• We ensure O(d) running time by breaking the vector into small chunks

(slided PPR with 50-bits chunks).
NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 21
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Application: Metric Privacy and Laplace Mechanism

Metric Privacy
For a mechanism A with PZ |X and a metric dX over X , it satisfies ϵ · dX -privacy
(Andrés et al. (2013)) if ∀x , x ′ ∈ X , S ⊆ Z, we have

P(Z ∈ S | X = x) ≤ eϵ·dX (x,x′)P(Z ∈ S | X = x ′).

Laplace Mechanism
• Users to send privatized data Z to an untrusted server, so that the server

can know X approximately but not exactly.
• Laplace mechanism (conditional density function fZ |X ∝ e−ϵdX (x,z) and

dX (x , z) = ∥x − z∥2) achieves ϵ · dX -privacy.
• It has been used in geo-indistinguishability to privatize the users’ locations.

Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., & Palamidessi, C. (2013, November).
Geo-indistinguishability: Differential privacy for location-based systems. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security (pp. 901-914).
NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 22
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Application: Metric Privacy and Laplace Mechanism

In Andrés et al. (2013), a discrete Laplace mechanism has been used, where each
coordinate of a real vector is quantized to a finite number of levels, introducing
additional distortion.

PPR-compressed Laplace mechanism
Consider PPR applied to the Laplace mechanismPZ |X where

X ∈ {x ∈ Rd
∣∣∥x∥2 ≤ C} and a proposal distribution Q = N (0, ( C2

d + d+1
ϵ2 )Id).

The output of PPR achieves an MSE d(d+1)
ϵ2 , a 2αϵ · dX -privacy and compression

size at most ℓ + log2(ℓ + 1) + 2 bits, where ℓ :=

d
2 log2

(
2
e

(
C2ϵ2

d + d + 1
))

− log2
Γ(d + 1)
Γ( d

2 + 1)
+ log2(3.56)

min{ α−1
2 , 1}

.

We compare with the discrete Laplace mechanism by Andrés et al. (2013).

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 23
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Application: Metric Privacy and Laplace Mechanism

Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., & Palamidessi, C. (2013, November).
Geo-indistinguishability: Differential privacy for location-based systems. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security (pp. 901-914).
NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 24
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Summary

Summary
• We proposed a novel scheme for compressing DP mechanisms, called

Poisson private representation (PPR).
• Unlike previous schemes which are either constrained on special classes of

DP mechanisms or introducing additional distortions on the output, our
scheme can compress and exactly simulate arbitrary mechanisms while
providing privacy guarantees.

• PPR provides a compression size that is close to the theoretic lower bound.

Future Works
• Reduce the running time of PPR under certain restrictions. For example, for

unimodal PZ |X , techniques utilized by Flamich et al. (2022); Flamich (2024)
could be useful.

Flamich, G. (2024). Greedy Poisson rejection sampling. Advances in Neural Information
Processing Systems, 36.

Flamich, G., Markou, S., & Hernández-Lobato, J. M. (2022, June). Fast relative entropy coding
with a* coding. In International Conference on Machine Learning (pp. 6548-6577). PMLR.
NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 25
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