
Overview Our Contributions Applications Summary References

Universal Exact Compression of Differentially
Private Mechanisms

Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li

NeurIPS 2024

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 2024



Overview Our Contributions Applications Summary References

Overview

Background
• In modern data science, large amounts of high-quality data are generated

with personal information, which are susceptible to privacy breaches.
• Differential privacy (Warner (1965); Dwork et al. (2006)) is a powerful tool

for safeguarding users’ privacy by properly randomizing the local data.
• Apart from privacy, communication (of high-dimensional data) often

becomes a bottleneck in the system pipeline.

Objective
We intend to answer the following fundamental question: how can we efficiently
communicate privatized data?

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhodnikova, S., & Smith, A. (2011). What
can we learn privately?. SIAM Journal on Computing, 40(3), 793-826.

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3 (pp. 265-284). Springer Berlin
Heidelberg.

Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American statistical association, 60(309), 63-69.
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Related Works

Compression of Differential Privacy (DP) Mechanisms
To compress ϵ-DP mechanisms:

• For ϵ ≤ 1, Bassily and Smith (2015) showed that a single bit can simulate
any local DP randomizer with a small degradation of utility.

• Bun et al. (2019) proposed a rejection-sampling-based compression
technique, which compresses an ϵ-DP mechanism into a 10ϵ-DP mechanism.

• Feldman and Talwar (2021) proposed a distributed simulation approach
using rejection sampling with shared randomness.

• In Triastcyn et al. (2021); Shah et al. (2022), importance sampling (or more
specifically, minimum random coding (Havasi et al. (2018))) was utilized.

• All these methods are approximate, i.e., the output distribution is distorted.

Bassily, R., & Smith, A. (2015, June). Local, private, efficient protocols for succinct histograms. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing (pp. 127-135).

Bun, M., Nelson, J., & Stemmer, U. (2019). Heavy hitters and the structure of local privacy. ACM Transactions on Algorithms (TALG).
Feldman, V., & Talwar, K. (2021, July). Lossless compression of efficient private local randomizers. In International Conference on

Machine Learning (pp. 3208-3219). PMLR.
Shah, A., Chen, W. N., Balle, J., Kairouz, P., & Theis, L. (2022, May). Optimal compression of locally differentially private mechanisms.

In International Conference on Artificial Intelligence and Statistics (pp. 7680-7723). PMLR.
Triastcyn, A., Reisser, M., & Louizos, C. (2021). Dp-rec: Private & communication-efficient federated learning. arXiv:2111.05454.
Havasi, M., Peharz, R., & Hernández-Lobato, J. M. (2018). Minimal random code learning: Getting bits back from compressed model

parameters. arXiv preprint arXiv:1810.00440.
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Related Works

Channel Simulation
One-shot channel simulation (a lossy compression task) aims to find the minimal
needed communication over a noiseless channel to “simulate” a channel PZ |X .

Related Works
• By Harsha et al. (2007) and Li and El Gamal (2018), PZ |X can be simulated

using I(X ; Z) + O(log(I(X ; Z))) bits.
• In Harsha et al. (2007), algorithms based on rejection sampling are proposed.
• Dithered quantization (Ziv (1985)) has been used to simulate an additive

noise channel in Agustsson and Theis (2020) for neural compression.
• More applications of channel simulation tools:

• Neural network compression by Havasi et al. (2018)
• Image compression via variational autoencoders by Flamich et al. (2020)
• Diffusion models with perfect realism by Theis et al. (2022)
• Differentially private federated learning by Shah et al. (2022)

Harsha, P., Jain, R., mathcallester, D., & Radhakrishnan, J. (2007, June). The communication complexity of correlation. In
Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07) (pp. 10-23). IEEE.

Li, C. T., & El Gamal, A. (2018). Strong functional representation lemma and applications to coding theorems. IEEE Transactions on
Information Theory.

Ziv, J. (1985). On universal quantization. IEEE Transactions on Information Theory, 31(3), 344-347.
Agustsson, E., & Theis, L. (2020). Universally quantized neural compression. Advances in neural information processing systems, 33,

12367-12376.
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Poisson Private Representation (PPR)

Poisson Private Representation: Overview(PPR)
• In this paper, we propose a novel algorithm, called Poisson private

representation (PPR), that is designed to compress and simulate any local
randomizer while ensuring local differential privacy.

• The advantages of our PPR are as follows:
1 Universality: Unlike dithered-quantization-based approaches which can only

simulate additive noise mechanisms, PPR can simulate any local or central
DP mechanism with discrete or continuous input and output.

2 Exactness: PPR enables exact simulation, ensuring that the reproduced
distribution perfectly matches the original one, and hence the compressed
sample maintains the same statistical properties.

3 Communication efficiency: PPR compresses the output of any DP
mechanism to a size close to the theoretical lower bound I(X ; Z).

• PPR is the first universal exact compression method for DP mechanisms
with an almost-optimal compression size.

• The methods by Bassily and Smith (2015); Bun et al. (2019); Feldman and
Talwar (2021); Shah et al. (2022) are not exact.

• The methods by Harsha et al. (2007) and Li and El Gamal (2018) do not
guarantee privacy.

Our code can be found in https://github.com/cheuktingli/PoissonPrivateRepr
NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 4
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Preliminaries

Definition: Differential Privacy
Given a mechanism A which induces distribution PZ |X of Z = A(X), we say that
it satisfies (ϵ, δ)-DP if for any neighboring (x , x ′) ∈ N and S ⊆ Z, it holds thata

P(Z ∈ S | X = x) ≤ eϵP(Z ∈ S | X = x ′) + δ. (1)
aIf a mechanism satisfies (ϵ, 0)-DP, we simply write it as ϵ-DP.

Definition: Poisson Functional Representation (PFR)

Let (Ti )i be a Poisson process with rate 1, independent of Zi
iid∼ Q for

i = 1, 2, . . .. Then (Zi , Ti )i is also a Poisson process. Fix any distribution P over
Z that is absolutely continuous with respect to Q. Let

T̃i := Ti ·
( dP

dQ (Zi )
)−1

. (2)

The Poisson functional representation by Li and El Gamal (2018) selects
Z = ZK with the smallest associated T̃K , i.e., let K := argmini T̃i and Z := ZK .

Li, C. T., & El Gamal, A. (2018). Strong functional representation lemma and applications to coding theorems. IEEE Transactions on
Information Theory.
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Poisson Private Representation (PPR)

Poisson Private Representation: Construction
Input: x , (ϵ, δ)-DP mechanism PZ |X , reference distribution Q, parameter α > 1.

1 Generate shared randomness between user and server (Zi )i=1,2,...
iid∼ Q.

2 The user knows (Zi )i , x , PZ |X and performs:
1 Generate the Poisson process (Ti )i with rate 1.

2 Compute T̃i := Ti ·
(

dPZ|X (·|x)
dQ (Zi )

)−1
.

3 Generate K ∈ Z+ with

P(K = k) =
T̃ −α

k∑∞
i=1 T̃ −α

i
. (3)

4 Compress and send K (e.g., by Elias delta code).

3 The server, which observes (Zi )i and K , outputs Z = ZK .

Remarks
• While the algorithm requires infinite samples, it can be reparametrized to

terminate in finite steps.
• When α = ∞, PPR reduces to PFR.
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Poisson Private Representation (PPR): Theoretic Guarantee

Proposition: Exactness
The output Z of PPR follows PZ |X exactly.

Theorems: Privacy Guarantee
1 Theorem 4.5 (ϵ-DP of PPR): If the mechanism PZ |X is ϵ-DP, then PPR

P(Zi )i ,K |X with parameter α > 1 is 2αϵ-DP.
2 Theorem 4.8 (Tighter (ϵ, δ)-DP of PPR): If PZ |X is (ϵ, δ)-DP, then PPR

P(Zi )i ,K |X with parameter α > 1 is (αϵ + ϵ̃, 2(δ + δ̃))-DP, for every ϵ̃ ∈ (0, 1]
and δ̃ ∈ (0, 1/3] that satisfy α ≤ e−4.2δ̃ϵ̃2/(− ln δ̃) + 1.

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 7
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Poisson Private Representation (PPR): Theory

Theorem: Communication efficiency
Theorem 4.3 (Compression size of PPR): For PPR with parameter α > 1,
message K satisfies

E[log2 K ] ≤ DKL(P(·|x)∥Q(·)) + log2(3.56)
min{ α−1

2 , 1}
.

As a result, when the input X ∼ PX is random, we have

E[log2 K ] ≤ I(X ; Z) + log2(3.56)
min{ α−1

2 , 1}
.

Hence, K can be encoded into I(X ; Z) + log2(I(X ; Z) + 1) + O(1) bits, close to
the theoretical lower bound I(X ; Z).

NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 8
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Application: Distributed Mean Estimation

Distributed Mean Estimation
• Consider n users, each with data Xi ∈ Rd .
• They use Gaussian mechanism and send Zi ∼ N

(
Xi ,

σ2

n Id

)
to server,

where σ ≥ C
√

2 ln(1.25/δ)
ϵ

. Server estimates the mean as µ̂(Z n) = 1
n

∑
i Zi .

• Using PPR to compress the Gaussian mechanism:
• µ̂(Zn) = 1

n
∑

i Zi is unbiased, has (ϵ, δ)-central DP.
• PPR satisfies (2α

√
nϵ, 2δ)-local DP for ϵ < 1√

n .
• The average per-client communication cost is at most ℓ + log2(ℓ + 1) + 2 bits,

where

ℓ :=
d
2

log2

(C2n
dσ2 + 1

)
+ ηα ≤

d
2

log2

( nε2

2d ln(1.25/δ)
+ 1

)
+ ηα,

and ηα := (log2(3.56))/ min{(α − 1)/2, 1}.
• We compare with Chen et al. (2024) on distributed mean estimation:

Chen, W. N., Song, D., Ozgur, A., & Kairouz, P. (2024). Privacy amplification via compression:
Achieving the optimal privacy-accuracy-communication trade-off in distributed mean estimation.
Advances in Neural Information Processing Systems, 36.
NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 9
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Application: Distributed Mean Estimation

Chen, W. N., Song, D., Ozgur, A., & Kairouz, P. (2024). Privacy amplification via compression:
Achieving the optimal privacy-accuracy-communication trade-off in distributed mean estimation.
Advances in Neural Information Processing Systems, 36.
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Application: Metric Privacy and Laplace Mechanism

Metric Privacy
For a mechanism A with PZ |X and a metric dX over X , it satisfies ϵ · dX -privacy
(Andrés et al. (2013)) if ∀x , x ′ ∈ X , S ⊆ Z, we have

P(Z ∈ S | X = x) ≤ eϵ·dX (x,x′)P(Z ∈ S | X = x ′).

Laplace Mechanism on Geo-indistinguishability

For Laplace mechanism PZ |X with X ∈ {x ∈ Rd
∣∣∥x∥2 ≤ C} and proposal

distribution Q = N (0, ( C2

d + d+1
ϵ2 )Id), the output of PPR has MSE d(d+1)

ϵ2 ,
2αϵ · dX -privacy and compression size ≤ ℓ + log2(ℓ + 1) + 2 bits, where ℓ :=

d
2 log2

(
2
e

(
C2ϵ2

d + d + 1
))

− log2
Γ(d + 1)
Γ( d

2 + 1)
+ log2(3.56)

min{ α−1
2 , 1}

.

We compare with the discrete Laplace mechanism by Andrés et al. (2013).

Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., & Palamidessi, C. (2013, November).
Geo-indistinguishability: Differential privacy for location-based systems. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security (pp. 901-914).
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Application: Metric Privacy and Laplace Mechanism

Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., & Palamidessi, C. (2013, November).
Geo-indistinguishability: Differential privacy for location-based systems. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security (pp. 901-914).
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Summary

Summary
• We proposed a novel scheme for compressing DP mechanisms, called

Poisson private representation (PPR).
• Unlike previous schemes which are either constrained on special classes of

DP mechanisms or introducing additional distortions on the output, our
scheme can compress and exactly simulate arbitrary mechanisms while
providing privacy guarantees.

• PPR provides a compression size that is close to the theoretic lower bound.

Future Works
• Reduce the running time of PPR under certain restrictions. For example, for

unimodal PZ |X , techniques utilized by Flamich et al. (2022); Flamich (2024)
could be useful.

Flamich, G. (2024). Greedy Poisson rejection sampling. Advances in Neural Information
Processing Systems, 36.

Flamich, G., Markou, S., & Hernández-Lobato, J. M. (2022, June). Fast relative entropy coding
with a* coding. In International Conference on Machine Learning (pp. 6548-6577). PMLR.
NeurIPS 2024 Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür and Cheuk Ting Li 13
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