Introduction

Local differential privacy (DP) [1].

Local randomizer A : X — Z with distribution Pz x satisfies
(e,0)-local DP if for any x, 2" € X and measurable set S C Z,

PriZeS|X=x)<e-Pr(ZeS|X=21)+0.

Compression of DP mechanisms.

Objective: Compress DP mechanisms exactly (i.e., Z ~ Py x)
to near-optimal sizes, while ensuring privacy guarantees.

Prior works:

- [2-5]: Compress e-local DP mechanism approximately.

- [6,7]: Dithered quantization tools ensure a correct simulated dis-

tribution, but only for additive noise mechanisms.
Poisson Functional Representation (PFR) [8]

Let (77); be a Poisson process with rate 1, independent of Z; £

(). Then (Z;,T;); is a Poisson process with intensity measure
() X Ajpso). Fix distribution P absolutely continuous w.r.t ). Let
1
j—P(Zi)> -
9
Theorem: K = arg min; T, and Z = Zx, then Z ~ P.
Our contributions: Poisson private representation, which is:
(a) Exact: simulates Py x exactly;
(b) Universal: simulates any DP mechanism;
(c) Communication-efficient: compresses Py x to

[(X;Z)+1log (I(X;Z)+1) + O(1) bits.

(d) Private: ensures both local and central DP.
Poisson Private Representation (p, = Pr(K = k)):
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T
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https://github.com /cheuktingli/PoissonPrivateRepr
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Poisson Private Representation (PPR)

Algorithm 1 (PPR).
Input: private v € X, (¢, 0)-local DP mechanism Py x,
reference distribution (), parameter o > 1.

Exactness

The output Z of PPR follows Pz x exactly.

Communication Efficiency

) Generate the Poisson process (1), with rate 1. Thm 4.3: For PPR with @ > 1, message K satisfies

5 Iy ~1 -
2) Compute T} = T; - (dpzdg’ ) (Z@)) - L logy K] < Dy (P(+]2)]|Q(+))
3) Generate K € Z. with +1ogy(3.56) / min ((a — 1)/2, 1)
. X K can be encoded by a prefix-free code with expected length ~
Pr(K=k)=T"/ (ZT a).
i=1

(4) Compress and send K (e.g., by Elias delta code).
(c) The server, which knows (Z;);, K, outputs Z = Zy.

(a) Generate shared randomness between user and server
i.d.

(Zi>z':1,2,... ~ Q).

) The user knows (Z;);, x, Pz x and performs:
1

(

b
(
(
(

Dk (P(-]x)||Q(-)) bits within a log gap. If X ~ Px is random,

take () = Py and the expected length ~ I(X; Z) (near-optimal).

Corollary 4.4: For Pz x with e-local DP, the compression size
< /{+log, (£ +1)+2 (bits),

where ¢ = £log, e + 1ogy(3.56)/ min ((a — 1)/2,1).

Privacy guarantees

o Thm 4.5: If the mechanism Py x is e-DP, then PPR
P(Zz)z',K|X with o« > 1 is 2ae-DP.

Remarks
e The exactness of PPR follows from the PFR [8].

e While the algorithm requires infinite samples, it can be

o Ihm 4§ If PZ!X IS (E,d)—DP, then PP ?NP(ZZ.)%K‘X 1S (Oéc"f +
£,2(0 +0))-DP, fora > 1, € € (0,1] and § € (0,1/3] s.t.

o < e *206%/(—1nd) + 1.

reparametrized to terminate in finite steps.

e When a« = 0o, PPR reduces to PFR.

Application: Metric Privacy and Laplace Mechanism
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—— PPR (500 bits)

Discrete Laplace (500 bits)
—— PPR (1000 bits)

Discrete Laplace (1000 bits)
—— PPR (1500 bits)

Discrete Laplace (1500 bits)

For a mechanism A with Pz x and a metric dy over X, it
satisfies ¢ - dy-privacy [9] if Vo, 2" € X', S C Z, we have
PrZeS|X=u)<eR ) prZeS|X =21

PPR-compressed Laplace mechanism:
For Laplace mechanism Py x with X € {z € RY|||z|, < C} and

proposal distribution Q = A(0, (& 4 “1)1,), the output of PPR s

108_

d I

has MSE @, 20 - dyp-privacy and compression size o7
< £+ logy(¢ + 1) + 2 bits, where £ =

d 2 (C4* )) N(d+1)  logy(3.56)

—log, [ — -d+ 1 — log, - F———— .

55 (e ( d > E+1) min{%, 1}
We compare with the discrete Laplace mechanism [9], d = 500. 194= L To1

Privacy (&)

Distributed Mean Estimation

Consider n users, each with data X; € R%. They use Gaussian
. 2
mechanism and send Z; ~ N(X;,Z1;) to server, where o >

C'v/2In(1.25/0)/e. Server estimates mean as ji(Z") =+ >". Z,;.
Using PPR to compress the Gaussian mechanism:

o (Z™) = 13" Z; is unbiased, has (g, §)-central DP.

o PPR satisfies (2ay/ne, 20)-local DP for € < 1/4/n.

e The average per-user communication < £+ logo(¢ + 1) + 2 bits,
d ’ log,(3.56
¢ = —log e -1 )+ — 082(3-56) .
2 2d log(1.25/9) min{(a —1)/2, 1}

Compare to CSGM [10] on distributed mean estimation:
Mean estimation (n = 500, d = 1000, 6=1e —6)
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MSE

----- CSGM (50 bits)
10~1{ ——-- CSGM (100 bits)
----- CSGM (200 bits)
CSGM (400 bits)
|- CSGM (1000 bits)
| =—— PPR (50 bits)

— PPR (100 bits)
— PPR (200 bits)
PPR (400 bits)
| —— Gaussian
| e sliced PPR (400 bits)
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