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Introduction
Local differential privacy (DP) [1].
Local randomizer A : X → Z with distribution PZ|X satisfies
(ε, δ)-local DP if for any x, x′ ∈ X and measurable set S ⊆ Z ,

Pr(Z ∈ S|X = x) ≤ eε · Pr(Z ∈ S|X = x′) + δ.

Compression of DP mechanisms.
Objective: Compress DP mechanisms exactly (i.e., Z ∼ PZ|X)
to near-optimal sizes, while ensuring privacy guarantees.
Prior works:
· [2-5]: Compress ε-local DP mechanism approximately.
· [6,7]: Dithered quantization tools ensure a correct simulated dis-
tribution, but only for additive noise mechanisms.
Poisson Functional Representation (PFR) [8]

Let (Ti)i be a Poisson process with rate 1, independent of Zi
i.i.d.∼

Q. Then (Zi, Ti)i is a Poisson process with intensity measure
Q × λ[0,∞). Fix distribution P absolutely continuous w.r.t Q. Let

T̃i ≜ Ti ·
(dP

dQ
(Zi)

)−1
.

Theorem: K ≜ arg mini T̃i and Z = ZK, then Z ∼ P .
Our contributions: Poisson private representation, which is:
(a) Exact: simulates PZ|X exactly;
(b) Universal: simulates any DP mechanism;
(c) Communication-efficient: compresses PZ|X to

I(X ; Z) + log
(
I(X ; Z) + 1

)
+ O(1) bits.

(d) Private: ensures both local and central DP.
Poisson Private Representation (pk ≜ Pr(K = k)):
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https://github.com/cheuktingli/PoissonPrivateRepr

Poisson Private Representation (PPR)
Algorithm 1 (PPR).
Input: private x ∈ X , (ε, δ)-local DP mechanism PZ|X,
reference distribution Q, parameter α > 1.
(a) Generate shared randomness between user and server

(Zi)i=1,2,...
i.i.d.∼ Q.

(b) The user knows (Zi)i, x, PZ|X and performs:
(1) Generate the Poisson process (Ti)i with rate 1.
(2) Compute T̃i ≜ Ti ·

(
dPZ|X(·|x)

dQ (Zi)
)−1

.
(3) Generate K ∈ Z+ with

Pr (K = k) = T̃ −α
k

/( ∞∑
i=1

T̃ −α
i

)
.

(4) Compress and send K (e.g., by Elias delta code).
(c) The server, which knows (Zi)i, K, outputs Z = ZK.

Privacy guarantees
1 Thm 4.5: If the mechanism PZ|X is ε-DP, then PPR
P(Zi)i,K|X with α > 1 is 2αε-DP.

2 Thm 4.8: If PZ|X is (ε, δ)-DP, then PPR P(Zi)i,K|X is (αε +
ε̃, 2(δ + δ̃))-DP, for α > 1, ε̃ ∈ (0, 1] and δ̃ ∈ (0, 1/3] s.t.

α ≤ e−4.2δ̃ε̃2/(− ln δ̃) + 1.

.

Exactness

The output Z of PPR follows PZ|X exactly.

Communication Efficiency
Thm 4.3: For PPR with α > 1, message K satisfies

E [log2 K] ≤ DKL (P (·|x)∥Q(·))
+ log2(3.56)/ min ((α − 1)/2, 1) .

K can be encoded by a prefix-free code with expected length ≈
DKL(P (·|x)∥Q(·)) bits within a log gap. If X ∼ PX is random,
take Q = PZ and the expected length ≈ I(X ; Z) (near-optimal).
Corollary 4.4: For PZ|X with ε-local DP, the compression size

≤ ℓ + log2 (ℓ + 1) + 2 (bits),
where ℓ ≜ ε log2 e + log2(3.56)/ min ((α − 1)/2, 1).

Remarks
• The exactness of PPR follows from the PFR [8].
• While the algorithm requires infinite samples, it can be

reparametrized to terminate in finite steps.
• When α = ∞, PPR reduces to PFR.

Application: Metric Privacy and Laplace Mechanism

For a mechanism A with PZ|X and a metric dX over X , it
satisfies ε · dX -privacy [9] if ∀x, x′ ∈ X , S ⊆ Z , we have

Pr(Z ∈ S | X = x) ≤ eε·dX (x,x′) Pr(Z ∈ S | X = x′).
PPR-compressed Laplace mechanism:
For Laplace mechanism PZ|X with X ∈ {x ∈ Rd

∣∣∥x∥2 ≤ C} and
proposal distribution Q = N (0, (C2

d + d+1
ε2 )Id), the output of PPR

has MSE d(d+1)
ε2 , 2αϵ · dX -privacy and compression size

≤ ℓ + log2(ℓ + 1) + 2 bits, where ℓ ≜

d

2
log2

(
2
e

(
C2ε2

d
+ d + 1

))
− log2

Γ(d + 1)
Γ(d

2 + 1)
+ log2(3.56)

min{α−1
2 , 1}

.

We compare with the discrete Laplace mechanism [9], d = 500.

Distributed Mean Estimation
Consider n users, each with data Xi ∈ Rd. They use Gaussian
mechanism and send Zi ∼ N (Xi,

σ2

n Id) to server, where σ ≥
C
√

2 ln (1.25/δ)/ε. Server estimates mean as µ̂(Zn) = 1
n

∑
i Zi.

Using PPR to compress the Gaussian mechanism:
• µ̂(Zn) = 1

n

∑
i Zi is unbiased, has (ε, δ)-central DP.

• PPR satisfies (2α
√

nε, 2δ)-local DP for ϵ < 1/
√

n.
• The average per-user communication ≤ ℓ + log2(ℓ + 1) + 2 bits,

ℓ := d

2
log

(
nε2

2d log(1.25/δ)
+ 1

)
+ log2(3.56)

min{(α − 1)/2, 1}
.

Compare to CSGM [10] on distributed mean estimation:
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