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Key Questions in Information Theory
Some key questions at the heart of information theory.

Key Question 1: Blocklength in Information Theory

One-shot information theory [2, 3]: network is only used once!

Error probability cannot be driven to zero!

No law of large number → no typicality!

No time-sharing!

No memoryless/ergodic assumption!

Objective: One-shot achievabilities that can imply existing (first/second

order) asymptotic/finite-blocklength bounds?

Key Question 2: Noisy network coding

Noisy network coding [4]:

What is the capacity of a noisy network?

What coding scheme can achieve the capacity?

Key Question 3: Unified Coding Scheme

A unified coding schemes [1]:

A unified node operation in networks?

Unify channel coding, source coding, and coding for computing?

Automated machine-proving tools?

AUnified One-Shot Coding Scheme
To answer the key questions on the left, our scheme [5] combines:

1. One-shot/finite-blocklength network information theory

2. Noisy network coding

3. Unified scheme (source coding/channel coding/coding for computing)

Main Theorem

For any acyclic discrete network (PYi|X i−1,Y i−1)i∈[N ], we provide a one-shot

achievability result: For any collection of indices (ai,j)i∈[N ],j∈[di] where

(ai,j)j∈[di] is a sequence of distinct indices in [i − 1] for each i, any se-

quence (d′
i)i∈[N ] with 0 ≤ d′

i ≤ di and any collection of conditional dis-

tributions (PUi|Yi,U
′
i
, PXi|Yi,Ui,U

′
i
)i∈[N ] (where U i,S := (Uai,j

)j∈S for S ⊆ [di]
and U

′
i := U i,[d′

i]), which induces the joint distribution of XN , Y N , UN

(the “ideal distribution”), there exists a public-randomness coding scheme

(PW , (fi)i∈[N ]) such that the joint distribution of X̃N , Ỹ N induced by the

scheme (the “actual distribution”) satisfies

δTV
(
PXN ,Y N , PX̃N ,Ỹ N

)
≤ E

[
min

{
N∑

i=1

d′
i∑

j=1
Bi,j, 1

}]
,

where γi,j := ∏di
k=j+1(ln |Uai,k

| + 1), and

Bi,j :=γi,j

di∏
k=j

(
2−ι(U i,k;U i,[di]\[j..k],Yi)+ι(U i,k;U ′

ai,k
,Yai,k

)+ 1{k >j}
)
.

Techniques

1. Poisson functional representation [3]: Let U := (Zu)u∈U be i.i.d. Exp(1)
random variables. Given a distribution P over finite U ,

UP := argminu

Zu

P (u)
.

2. Each node is associated with an exponential process.

3. Exponential Process Refinement: For QV,U over a finite V × U , ∀v ∈ V ,

E
[

1
QU

V,U(v, UP )

∣∣∣∣∣UP

]
≤ ln |U| + 1

QV (v)

 P (UP )
QU |V (UP |v)

+ 1
 .

QU,V (prior) −→ refine by U (soft decoding) −→ QU
V,U (posterior)
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Examples
The main theorem can be applied to any combination of source coding,

channel coding and coding for computing. Note ι(x; y|z) := log P (x,y|z)
(P (x|z)P (y|z)).

Channel Coding with State Info at Encoder

Fix PU |S and x : U × S → X . For M ∼ Unif[L], S ∼ PS, let U1 = (U, M),
Pe := P(X̃2 6= M) ≤ E

[
min

{
L2−ι(U ;Y )+ι(U ;S), 1

}]
.

It recovers asymptotic capacity, attains the best known second-order result.

Source Coding with Side Info at Decoder

Fix PU |X and z : U × Y → Z . For X ∼ PX, T ∼ PT |X, M ∈ [L],

Pe := P{d(X, Z̃) > D} ≤ E
[

min
{

1{d(X, Z) > D} + L−12−ι(U ;T )+ι(U ;X), 1
}]

.

It recovers asymptotic capacity, and also covers coding for computing.

Multiple Access Channel

For MAC PY |X1,X2 and Mj ∼ Unif[Lj] for j = 1, 2, with γ := ln(L1|X1|) + 1,

Pe ≤ E
[

min
{

γL1L22−ι(X1,X2;Y ) + γL22−ι(X2;Y |X1) + L12−ι(X1;Y |X2), 1
}]

.

It recovers the asymptotic capacity region.

One-Shot Relay Channel

Let U1 := (X, M), U2 := U , Main Theorem gives a compress-forward bound:

Pe ≤ E
[

min
{
γL2−ι(X ;U,Y )

(
2−ι(U ;Y )+ι(U ;Yr) + 1

)
, 1

}]
where γ = ln |U| + 1, (X, Yr, U, Xr, Y ) ∼PXPYr|XPU |Yrδxr(Yr,U)PY |X,Yr,Xr.

It is a one-shot version of relay-with-unlimited-look-ahead.

If Y = (Y ′, Y ′′) and PY |X,Xr,Yr = PY ′|X,YrPY ′′|Xr, it is a one-shot version of

primitive relay channel.

By message splitting, we can also have a partial-decode-forward bound.
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