

Key Questions in Information Theory

Some key questions at the heart of information theory.

Key Question 1: Blocklength in Information Theory

$0001101 \dots 10110$

What if blocklength is 1?

One-shot information theory [2, 3]: network is only used **once**!

- Error probability cannot be driven to zero!
- No law of large number \rightarrow no typicality!
- No time-sharing!
- No memoryless/ergodic assumption!
- **Objective:** One-shot achievabilities that can imply existing (first/second order) asymptotic/finite-blocklength bounds?

Key Question 2: Noisy network coding

Noisy network coding [4]:

- What is the capacity of a noisy network?
- What coding scheme can achieve the capacity?

Key Question 3: Unified Coding Scheme

A unified coding schemes [1]:

- A unified node operation in networks?
- Unify channel coding, source coding, and coding for computing?
- Automated machine-proving tools?

Personal Web: https://yanxiaoliu-mike.github.io

One-Shot Coding over General Noisy Networks

Yanxiao Liu^{1,2}

¹The Chinese University of Hong Kong

 $(X_N, Y_N) \leftarrow M_N$

A Unified One-Shot Coding Scheme

To answer the key questions on the left, our scheme [5] combines:

- 1. One-shot/finite-blocklength network information theory
- 2. Noisy network coding
- 3. Unified scheme (source coding/channel coding/coding for computing)

Main Theorem

For any acyclic discrete network $(P_{Y_i|X^{i-1},Y^{i-1}})_{i\in[N]}$, we provide a one-shot achievability result: For any collection of indices $(a_{i,j})_{i \in [N], j \in [d_i]}$ where $(a_{i,j})_{j \in [d_i]}$ is a sequence of distinct indices in [i - 1] for each *i*, any sequence $(d'_i)_{i \in [N]}$ with $0 \leq d'_i \leq d_i$ and any collection of conditional distributions $(P_{U_i|Y_i,\overline{U}'_i}, P_{X_i|Y_i,U_i,\overline{U}'_i})_{i\in[N]}$ (where $\overline{U}_{i,\mathcal{S}} := (U_{a_{i,j}})_{j\in\mathcal{S}}$ for $\mathcal{S} \subseteq [d_i]$ and $\overline{U}'_i := \overline{U}_{i,[d']}$, which induces the joint distribution of X^N, Y^N, U^N (the "ideal distribution"), there exists a public-randomness coding scheme $(P_W, (f_i)_{i \in [N]})$ such that the joint distribution of \tilde{X}^N, \tilde{Y}^N induced by the scheme (the "actual distribution") satisfies

$$\delta_{\mathrm{TV}} \Big(P_{X^N, Y^N}, P_{\tilde{X}^N, \tilde{Y}^N} \Big) \leq \mathbf{E} \Big[\min \Big\{ \sum_{i=1}^N \sum_{j=1}^{d_i} B_{i,j}, 1 \Big\} \Big],$$

$$\gamma_{i,i} := \prod_{i=1}^{d_i} \inf (\ln |\mathcal{U}_{i,i}| + 1) \text{ and }$$

where
$$\gamma_{i,j} := \prod_{k=j+1}^{a_i} (\ln |\mathcal{U}_{a_{i,k}}| + 1)$$
, and
 $B_{i,j} := \gamma_{i,j} \prod_{i=1}^{d_i} \left(2^{-\iota(\overline{U}_{i,k};\overline{U}_{i,[d_i]\setminus[j..k]},Y_i) + \iota(\overline{U}_{i,k};\overline{U}'_{a_{i,k}},Y_{a_{i,k}})} + \mathbf{1}\{k > j\} \right).$

Techniques

Poisson functional representation [3]: Let $\mathbf{U} := (Z_u)_{u \in \mathcal{U}}$ be i.i.d. Exp(1) random variables. Given a distribution P over finite \mathcal{U} ,

k=j

 $\mathbf{U}_P := \operatorname{argmin}_u$

- 2. Each node is associated with an exponential process.
- **Exponential Process Refinement**: For $Q_{V,U}$ over a finite $\mathcal{V} \times \mathcal{U}, \forall v \in \mathcal{V}$,

$$\begin{split} \mathbf{E} \bigg[\frac{1}{Q_{V,U}^{\mathbf{U}}(v,\mathbf{U}_P)} \bigg| \mathbf{U}_P \bigg] &\leq \frac{\ln |\mathcal{U}| + 1}{Q_V(v)} \left(\frac{P(\mathbf{U}_P)}{Q_{U|V}(\mathbf{U}_P|v)} + 1 \right). \\ Q_{U,V} \text{ (prior)} \longrightarrow \text{refine by } \mathbf{U} \text{ (soft decoding)} \longrightarrow Q_{V,U}^{\mathbf{U}} \text{ (posterior)} \end{split}$$

References

- [1] Si-Hyeon Lee and Sae-Young Chung. A unified random coding bound. IEEE Transactions on Information Theory, 64(10):6779-6802, 2018.
- [2] Cheuk Ting Li and Venkat Anantharam. A unified framework for one-shot achievability via the poisson matching lemma. IEEE Transactions on Information Theory, 67(5):2624–2651, 2021.
- [3] Cheuk Ting Li and Abbas El Gamal. Strong functional representation lemma and applications to coding theorems. IEEE Transactions on Information Theory, 64(11):6967–6978, 2018.
- [4] Sung Hoon Lim, Young-Han Kim, Abbas El Gamal, and Sae-Young Chung. Noisy network coding. IEEE Transactions on Information Theory, 57(5):3132–3152, 2011.
- [5] Yanxiao Liu and Cheuk Ting Li. One-shot coding over general noisy networks. *arXiv preprint* arXiv:2402.06021, 2024.

Cheuk Ting Li¹

²Stanford University

$${}^{\prime} \frac{Z_u}{P(u)}.$$

The main theorem can be applied to any combination of source coding, channel coding and coding for computing. Note $\iota(x; y|z) := \log \frac{P(x,y|z)}{(P(x|z)P(y|z))}$.

Channel Coding with State Info at Encoder

Source Coding with Side Info at Decoder

Multiple Access Channel

It recovers the asymptotic capacity region.

One-Shot Relay Channel

- Let $U_1 := (X, M), U_2 := U$, Main Theorem gives a compress-forward bound: $P_{e} \leq \mathbf{E} \left[\min \left\{ \gamma \mathsf{L} 2^{-\iota(X;U,Y)} \left(2^{-\iota(U;Y)+\iota(U;Y_{r})} + 1 \right), 1 \right\} \right]$
- where $\gamma = \ln |\mathcal{U}| + 1$, $(X, Y_{r}, U, X_{r}, Y) \sim P_{X} P_{Y_{r}|X} P_{U|Y_{r}} \delta_{x_{r}(Y_{r}, U)} P_{Y|X, Y_{r}, X_{r}}$.
- It is a one-shot version of relay-with-unlimited-look-ahead. • If Y = (Y', Y'') and $P_{Y|X,X_r,Y_r} = P_{Y'|X,Y_r}P_{Y''|X_r}$, it is a one-shot version of primitive relay channel.
- By message splitting, we can also have a partial-decode-forward bound.

Yanxiao Liu contributed to this work as a PhD student at The Chinese University of Hong Kong. He is currently a visiting student researcher at Stanford University.

Examples

$$\xrightarrow{X} P_{Y|X,S} \xrightarrow{Y} \text{Dec} \longrightarrow \widehat{M}$$

- Fix $P_{U|S}$ and $x: \mathcal{U} \times \mathcal{S} \to \mathcal{X}$. For $M \sim \text{Unif}[L], S \sim P_S$, let $U_1 = (U, M)$, $P_e := \mathbf{P}(\tilde{X}_2 \neq M) \le \mathbf{E} \left[\min \left\{ \mathsf{L} 2^{-\iota(U;Y) + \iota(U;S)}, 1 \right\} \right].$
- It recovers asymptotic capacity, attains the best known second-order result.

- Fix $P_{U|X}$ and $z: \mathcal{U} \times \mathcal{Y} \to \mathcal{Z}$. For $X \sim P_X, T \sim P_{T|X}, M \in [L]$, $P_e := \mathbf{P}\{d(X, \tilde{Z}) > \mathsf{D}\} \le \mathbf{E}\Big[\min\Big\{\mathbf{1}\{d(X, Z) > \mathsf{D}\} + \mathsf{L}^{-1}2^{-\iota(U;T) + \iota(U;X)}, 1\Big\}\Big].$ It recovers asymptotic capacity, and also covers coding for computing.
- For MAC $P_{Y|X_1,X_2}$ and $M_j \sim \text{Unif}[L_j]$ for j = 1, 2, with $\gamma := \ln(L_1|\mathcal{X}_1|) + 1$, $P_{e} \leq \mathbf{E} \Big[\min \Big\{ \gamma \mathsf{L}_{1} \mathsf{L}_{2} 2^{-\iota(X_{1}, X_{2}; Y)} + \gamma \mathsf{L}_{2} 2^{-\iota(X_{2}; Y | X_{1})} + \mathsf{L}_{1} 2^{-\iota(X_{1}; Y | X_{2})}, 1 \Big\} \Big].$