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Introduction and Motivation

Background: Find practical construction for the Gelfand-Pinsker
setting with cost constraint and for the asymmetric channels

Barron et al. [2003] proposed nested linear code, but not sparse
Martinian and Wainwright [2006] used sparse graphical code to
generate nested linear code which is practical
Li and Anantharam [2021] proposed Poisson functional representation
construction, with the best known second-order error bound [Scarlett,
2015] compared to other finite-blocklength schemes, but is impractical

Our goal is to construct a code that is:

Practical
Applicable to asymmetric channels (unlike Barron et al. [2003])
Having error performance as good as (and sometimes better than) the
construction in Barron et al. [2003]
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Query Functions

Let H ∈ Fn×n
2 be a full-rank matrix, called the full parity check matrix

H uniformly chosen random full-rank matrix
Also works for sparse H, but the analysis is left for future study

For a bias vector q = [q1, . . . , qn] ∈ [0, 1]n, define the q-weight of a
vector u ∈ Fn

2 as

wq(u) :=
n∏

i=1

quii (1− qi )
1−ui = Pxi∼Bern(qi )(x = u)

Definition

Given the bias vectors p,q ∈ [0, 1]n (we call p the codeword bias, and q
the parity bias), the query function with respect to H is given by

fH(p,q) := argmaxx∈Fn
2
wp(x)wq(xH

T ) (1)
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Weighted Parity-Check Codes (WPC)

Definition: Encoder

Given the encoder codeword bias function pe : Fk
2 → [0, 1]n, which maps a

message m ∈ Fk
2 (and other information available at the encoder) to a bias

vector pe(m), and the encoder parity bias function qe : Fk
2 → [0, 1]n. The

encoding function is

m 7→ x = fH (pe(m), qe(m)) (2)

Definition: Decoder

Similarly, given the decoder codeword and parity bias functions
pd ,qd : Fn

2 → [0, 1]n. For a corrupted version y of x, the decoding
function is

y 7→ m̂ =
[
(x̂HT )1, . . . , (x̂H

T )k

]
, (3)

where
x̂ := fH (pd(y), qd(y)) (4)
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Recovering Conventional Linear Codes by WPC

Binary symmetric channel with parameter β, i.e., P(yi |xi ) is BSC(β)

To recover the conventional linear code, we take

pe(m) =
1

2
1n, qe(m) = [m, 0n−k ],

pd(y) = β1n + (1− 2β)y, qd(y) =
1

2
1n,

and substitute into Equations (2) and (4)

Note that wpd (y)(x) = P(x|y) is the posterior distribution of x
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WPC for Gelfand-Pinsker Setting

Encoder Decoder

Assume xi is binary, and si , yi are arbitrary
Can generalize to larger xi by considering Fℓ instead of F2

Encoder: after observing m and s, takes

pe(m, s) = [pe(s1), . . . , pe(sn)], qe(m, s) = [m, q], (5)

where we choose pe(s) = PX |S(1|s) so x approximately follows PX |S
Decoder: after observing y, takes

pd(y) = [pd(y1), . . . , pd(yn)], qd(y) = [
1

2
1k , q], (6)

and outputs m̂ = [(x̂HT )1, . . . , (x̂HT )k ], where pd(y) = PX |Y (1|y)
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WPC is Capacity-Achieving

We first state our main result as follows:

Theorem 1

Assume q ∼ PQ i.i.d., where PQ is a discrete distribution over [0, 1]
with finite support satisfying

E[Hb(Q)] =
1− H(X |S)

1− R
, (7)

where Hb : [0, 1] → [0, 1] is the binary entropy function

Then, for any R < I (X ;Y )− I (X ;S), the probability of error of the
code tends to 0, and the empirical joint distribution of
{(si , xi )}i=1,...,n tends to PSPX |S in probability as n → ∞

Unlike nested linear codes, WPC also works for asymmetric PX |S

Proof uses Sanov’s theorem and robust typicality
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How to Choose PQ satisfying Equation (7)

To achieve capacity, we need E[Hb(Q)] = 1−H(X |S)
1−R

(Threshold) Take PQ(0) = PQ(1) = (1− γ)/2, PQ(1/2) = γ, where
γ = (1− H(X |S))/(1− R)

Essentially equivalent to the nested linear code

(Linear) Take PQ to be the uniform distribution Unif[0, 1]

E[Hb(Q)] = 1−H(X |S)
1−R may not hold, not capacity achieving

(Threshold linear) Construct PQ using the cdf

FQ(t) :=



0 if t < 0

max{θ/2, 0} if 0 ≤ t < |θ|/2
t if |θ|/2 ≤ t < 1− |θ|/2
1−max{θ/2, 0} if 1− |θ|/2 ≤ t < 1

1 if t ≥ 1

(8)

where θ ∈ [−1, 1] is chosen s.t. E[Hb(Q)] = 1−H(X |S)
1−R

Combines the linear method for t close to 1/2, and the threshold
method for smaller and larger t’s
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Simulation Result
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Figure: Performance evaluation with n = 20, β = 0.05
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Conclusion and Discussions

We propose the weighted parity check code, applicable to channels
with state and asymmetric channels

Simulation results show that WPC achieves a smaller error probability
compared to nested linear codes

In the full paper [Ling et al., 2022], we show that our weighted
construction also applies to the Wyner-Ziv setting [Wyner and Ziv,
1976]

The code can be made more practical by considering a sparse
parity-check matrix, though this is left for future work
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