Reliable Throughput of Generalized Collision Channel without Synchronization

Yijun Fan 1 , Yanxiao Liu 1 , Yi Chen 2 , Shenghao Yang 2 and Raymond W. Yeung¹

¹Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China

²School of Science and Engineering, The Chinses University of Hong Kong, Shenzhen, China

> Jun 30, 2023 ISIT 2023

Table of Contents

[Background](#page-1-0)

[Problem Formulation](#page-5-0)

[Reliable Throughput Region](#page-13-0)

[Outer Boundary](#page-20-0)

Collision Channel

- ▶ Practical communication systems: often multi-user in nature.
- ▶ Signals intended for a receiver may cause interference at other receivers.
- \triangleright Collision channel: the simplest and nontrivial multi-user system

▶ Collision: two or more packets overlap at receivers.

▶ Massey and Mathys [\[3\]](#page-23-0) studied the collision channel model for multiple access communication under unknown time offsets.

Time offsets

- ▶ Time offsets can model both transmission delays and time unsynchronization.
- ▶ The work [[2](#page-23-1)] and its seminal research studied communication with fixed time offsets.
- ▶ Collision channel: communication under unfixed time offsets.

Protocol Sequence

▶ Transmissions are under the guidance of protocol sequences.

- \triangleright Binary sequences with finite length;
- \triangleright Shift-invariant (SI): throughputs remain the same under arbitrary time offsets.
- ▶ Massey and Mathys [\[3\]](#page-23-0) proved that reliable throughputs for multiple access systems can be achieved by SI sequence.
- ▶ Families of protocol sequences for multiple access communication: shift-invariant sequences [\[4\]](#page-24-1), the Wobbling sequences [[5](#page-24-2)], the Chinese Reminder Theorem sequences [\[1\]](#page-23-2).

Table of Contents

[Background](#page-1-0)

[Problem Formulation](#page-5-0)

[Reliable Throughput Region](#page-13-0)

[Outer Boundary](#page-20-0)

Generalized Collision Channel Model

- ▶ A communication system consists of *M* transmitters u_1, u_2, \ldots, u_M , paired up with *M* receivers r_1, r_2, \ldots, r_M .
- \blacktriangleright Each pair (u_i, r_i) is defined as a link l_i , $i = 1, 2, \ldots, M$.
- ▶ In practice, some transmitters and receivers may correspond to an identical physical node.
- \triangleright $\mathcal{L} := \{l_1, l_2, \ldots, l_M\}$ is the collection of all links.

Figure: Line network. Receiver r_i and transmitter u_{i+1} correspond to one physical node, depicted as one shaded area.

Time offsets of Collision Channel

- ▶ Time offset δ_k^i : transmitter u_i starts transmission at time *t*, receiver r_k starts to detect u_i 's signal at time $t + \delta_i^k$.
- \triangleright Collision occurs at receiver r_k as signals from u_i and u_i overlap.

Figure: The time offset δ^i_k is from transmitter u_i to receiver r_k . The dark area at *r^k* represents a collision.

Collision Profile

Assume signals can propagate two hops at most.

- ▶ Since the signals from transmitter *u*₃ can be detected at receiver r_4 , the link $l_3 = (u_3, r_3)$ is in l_4 's collision set $\mathcal{I}(l_4)$.
- ▶ Signals from *u*₁ and *u*₂ cannot reach *r*₄. Hence, *l*₁ and *l*₂ are not in $\mathcal{I}(l_4)$ and $\mathcal{I}(l_4) = \{l_3\}.$

- \triangleright $\mathcal{I}(l_1) = \{l_2, l_3, l_4\}, \mathcal{I}(l_2) = \{l_1, l_3, l_4\}$ and $\mathcal{I}(l_3) = \{l_2, l_4\}.$
- \triangleright Collision profile $\mathcal{I} = {\mathcal{I}(l_1), \mathcal{I}(l_2), \mathcal{I}(l_3), \mathcal{I}(l_4)}$

Protocol Sequence

- ▶ Timeslot *n ∈* Z: the semi-open time interval *n ≤ t < n* + 1.
- \blacktriangleright Protocol signal $s_i(t)$ assigned to transmitter u_i : l_i is active if $s_i(t) = 1$ and inactive if $s_i(t) = 0$.
- \triangleright Continuous protocol signal $s_i(t)$ can be equivalently represented by a binary protocol sequence $s_i := [s_i(0), s_i(1), \ldots, s_i(L_i-1)].$

[.](#page-8-0) . . . [.](#page-10-0) [.](#page-8-0) [.](#page-9-0) . [.](#page-9-0) . [.](#page-10-0) . . [.](#page-4-0) [.](#page-5-0) . [.](#page-12-0) . [.](#page-13-0) . . . [.](#page-4-0) . [.](#page-5-0) . [.](#page-12-0) . [.](#page-13-0) [.](#page-0-0) [.](#page-24-0)

Figure: The protocol signal corresponding to the protocol sequence $s = [1, 0, 1, 0]$. The shaded areas represent active time intervals.

Reliable Throughput Region

- ▶ Duty factor *f_i* for **s**_{*i*}: the fraction of its nonzero period $f_i = \frac{1}{L}$ $\frac{1}{L_i} \sum_{t=0}^{L_i-1} s_i(t)$.
- \blacktriangleright Approachable throughput vector $\mathbf{T} = [T_1, \ldots, T_M]$: *∀ϵ >* 0, there exist protocol signals *si*(*t*) for each transmitter u_i , such that the receiver r_i is able to receive correctly the packets from u_i at a rate no smaller than $T_i - \epsilon$ packets/timeslot, for any values of the time offsets.
- ▶ We call the collection of all approachable reliable throughput vectors reliable throughput region.

Two Reliable Throughput Regions

- \triangleright Slot-synchronized cases $C_{\sf s}$: the collection of all approachable throughput vectors under arbitrary integer time offsets.
- \triangleright Non-synchronized cases C_u : the collection of all approachable throughput vectors under arbitrary time offsets.

Major Problems

- ▶ What is the difference in reliable throughput region between the slot-synchronized cases *C^s* and the non-synchronized cases *Cu*?
- ▶ How to construct protocol sequence to approach reliable throughputs for generalized collision channel?
- ▶ How to approach the outer boundary of reliable throughput regions?

Table of Contents

[Background](#page-1-0)

[Problem Formulation](#page-5-0)

[Reliable Throughput Region](#page-13-0)

[Outer Boundary](#page-20-0)

Main Result

Theorem

Given a link set $\mathcal{L} = \{l_1, \ldots, l_M\}$ *and its collision profile* $\mathcal{I}, \mathcal{C}_s = \mathcal{C}_u$ *, consisting of throughput vectors* $\mathbf{T} = [T_1, \ldots, T_M]$ *such that*

$$
T_i = f_i \prod_{j: l_j \in \mathcal{I}(l_i)} (1 - f_j),
$$

[.](#page-13-0) . . . [.](#page-15-0) [.](#page-13-0) [.](#page-14-0) . [.](#page-14-0) . [.](#page-15-0) . . [.](#page-12-0) [.](#page-13-0) . [.](#page-19-0) . [.](#page-20-0) . . . [.](#page-12-0) . [.](#page-13-0) . [.](#page-19-0) . [.](#page-20-0) [.](#page-0-0) [.](#page-24-0)

 $\mathbf{where} \; \mathbf{f} = [f_1 \dots, f_M] \; \text{is a duty factor vector in} \; [0,1]^M.$

Shifted Protocol Sequences

- \triangleright Under integer time offsets, the receivers receive packets according to a row-wise shifted protocol sequence.
- ▶ Transmitter *u_i* send signals according to $[s_i(0), s_i(1), \ldots, s_i(L-1)]$. Receiver r_i receives $[s_i(-\delta_i^j \bmod L), s_i(1-\delta_i^j \bmod L), \ldots, s_i(L-1-\delta_i^j \bmod L)].$

Example

Suppose transmitter u_i sends $\mathbf{s}_i = [1, 0, 1, 0]$ and $\delta_i^i = 1$. The signals received at r_i is indeed $[0, 1, 0, 1]$.

Protocol Matrices in Generalized Collision Channel

- ▶ Protocol matrix $\mathbf{S} = [s_1, s_2, \dots, s_M]^\intercal$.
- \blacktriangleright Each receiver r_i receives a row-wise shifted submatrix $S'[\delta]$.
- ▶ Submatrix $S^{i}[\delta]$: formed by a subset of $\{s_1, s_2, \ldots, s_M\}$.

Example

Suppose $\mathcal{I}(\ell_2) = \{\ell_3\}$. Let the time offsets from u_2 to r_2 be 1 and from u_3 to r_2 be 3. When the protocol matrix $\mathbf{S} =$ $\sqrt{ }$ \mathbf{I} 1 0 1 0 1 1 0 0 0 1 0 1 1 \vert , the row-wise shifted submatrix ${\bf S}^2[\delta]$ received by r_2 is

$$
\begin{bmatrix} s_2(3) & s_2(0) & s_2(1) & s_2(2) \\ s_3(1) & s_3(2) & s_3(3) & s_3(0) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}
$$

[.](#page-15-0) . . . [.](#page-17-0) [.](#page-15-0) [.](#page-16-0) . [.](#page-16-0) . [.](#page-17-0) . . [.](#page-12-0) [.](#page-13-0) . [.](#page-19-0) . [.](#page-20-0) . . . [.](#page-12-0) . [.](#page-13-0) . [.](#page-19-0) . [.](#page-20-0) [.](#page-0-0) [.](#page-24-0)

.

Shift-Invariant (SI) Protocol Sequences

- \triangleright A set of sequences $\{s_1, s_2, \ldots, s_M\}$ is SI if the resulting throughputs T_1, T_2, \ldots, T_M remains the same under arbitrary time offsets.
- \triangleright The sequence set $\{s_1, s_2, \ldots, s_M\}$ is SI if and only if, in the corresponding protocol matrix **S**, the combination of columns remains the same under arbitrary row-wise shift.

SI Protocol Sequences in Generalized Collision Channel

- ▶ Multiple access communication: S is shift-invariant.
- ▶ Generalized collision channel: S^i for each receiver r_i is shift-invariant.
- ▶ Are the sequence subsets *{si}i∈J*(*j*) still shift-invariant for all receiver *r^j* , *j* = 1*,* 2*, . . . , M*?

Lemma

For any integer time offsets δ *and collision set* $\mathcal{I}(l_i)$ *at receiver r_i*, $i = 1, 2, \ldots, M$, the combination of columns in $\mathbf{S}^i[\delta]$ remains the *same under arbitrary row-wise shift. All constructed* **S** *i satisfies* $T_i = f_i \prod_{j: l_j \in \mathcal{I}(l_i)} (1 - f_j).$

Non-synchronized Case *C^u*

- ▶ Adjust constructed protocol sequences by replacing 0 with 0^k and 1 with 1*k−*¹ .
- ▶ The positive integer *k* is sufficiently large, 0*^k* and 1*k−*¹ denote a string of *k* zeros and a string of *k −* 1 ones.
- ▶ All the throughput vectors are approachable using the adjusted protocol matrices for non-synchronized collision channels.

Table of Contents

[Background](#page-1-0)

[Problem Formulation](#page-5-0)

[Reliable Throughput Region](#page-13-0)

[Outer Boundary](#page-20-0)

Outer Boundary

▶ Outer boundary of reliable throughput region: the set of all approachable **T**, such that there does not exist another approachable **T***′* with **T** *<* **T***′* .

► Each
$$
T_i = f_i \prod_{j: l_j \in \mathcal{I}(l_i)} (1 - f_j)
$$
 is defined by duty factors.

- ▶ Protocol sequences are constructed based on duty factors.
- ▶ Find duty factor vectors **f** that map to the throughput vectors on the outer boundary.

Characterization of Outer Boundary

 \blacktriangleright **F** = diag(**f**).

- \blacktriangleright **I** is the $M \times M$ identity matrix.
- ▶ $\textbf{E} = [e_{ij}] \in \{0,1\}^{M \times M}$, where $e_{ij} = 1$ if $l_i \in \mathcal{I}(l_j)$ and $e_{ij} = 0$ otherwise.

Theorem

For irreducible $\mathsf{F}(\mathsf{E} + \mathsf{I})$ *, the duty factor vector* $\mathsf{f} \in (0,1)^M$ *determines a point on the outer boundary of a reliable throughput region if only if the Perron–Frobenius eigenvalue of* **F**(**E** + **I**) *is* 1*.*

In the collision channel model for multiple access communication, **E** + **I** is a matrix of all ones. Then the condition in Theorem. [5](#page-22-1) is ∑ *M* $\frac{m}{n-1}$ $f_i = 1$, consistent to the result in [\[3\]](#page-23-0).

References I

■ Y. Chen, Y.-H. Lo, K. W. Shum, W. S. Wong, and Y. Zhang. CRT sequences with applications to collision channels allowing successive interference cancellation. *IEEE Transactions on Information Theory*, 64(4):2910–2923, 2018.

- **M.** Chitre, M. Motani, and S. Shahabudeen. Throughput of networks with large propagation delays. *IEEE Journal of Oceanic Engineering*, 37(4):645–658, 2012.
- 昴 J. Massey and P. Mathys.

The collision channel without feedback.

IEEE Transactions on Information Theory, 31(2):192–204, 1985.

References II

K. W. Shum, C. S. Chen, C. W. Sung, and W. S. Wong. Shift-invariant protocol sequences for the collision channel without feedback.

IEEE Transactions on Information Theory, 55(7):3312–3322, 2009.

i W. S. Wong.

New protocol sequences for random-access channels without feedback.

IEEE Transactions on Information Theory, 53(6):2060–2071, 2007.