Reliable Throughput of Generalized Collision Channel without Synchronization

Yijun Fan¹, Yanxiao Liu¹, Yi Chen², Shenghao Yang² and Raymond W. Yeung¹

¹Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China

²School of Science and Engineering, The Chinses University of Hong Kong, Shenzhen, China

> Jun 30, 2023 ISIT 2023

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Table of Contents

Background

Problem Formulation

Reliable Throughput Region

Outer Boundary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Collision Channel

- Practical communication systems: often multi-user in nature.
- Signals intended for a receiver may cause interference at other receivers.
- Collision channel: the simplest and nontrivial multi-user system

Collision: two or more packets overlap at receivers.

Massey and Mathys [3] studied the collision channel model for multiple access communication under unknown time offsets.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Time offsets

- Time offsets can model both transmission delays and time unsynchronization.
- The work [2] and its seminal research studied communication with fixed time offsets.
- Collision channel: communication under unfixed time offsets.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Protocol Sequence

Transmissions are under the guidance of protocol sequences.

- Binary sequences with finite length;
- Shift-invariant (SI): throughputs remain the same under arbitrary time offsets.
- Massey and Mathys [3] proved that reliable throughputs for multiple access systems can be achieved by SI sequence.
- Families of protocol sequences for multiple access communication: shift-invariant sequences [4], the Wobbling sequences [5], the Chinese Reminder Theorem sequences [1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Table of Contents

Background

Problem Formulation

Reliable Throughput Region

Outer Boundary

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

Generalized Collision Channel Model

- A communication system consists of M transmitters u_1, u_2, \ldots, u_M , paired up with M receivers r_1, r_2, \ldots, r_M .
- Each pair (u_i, r_i) is defined as a link l_i , i = 1, 2, ..., M.
- In practice, some transmitters and receivers may correspond to an identical physical node.
- $\mathcal{L} := \{l_1, l_2, \dots, l_M\}$ is the collection of all links.

Figure: Line network. Receiver r_i and transmitter u_{i+1} correspond to one physical node, depicted as one shaded area.

Time offsets of Collision Channel

- Time offset δ_k^i : transmitter u_i starts transmission at time t, receiver r_k starts to detect u_i 's signal at time $t + \delta_i^k$.
- Collision occurs at receiver r_k as signals from u_i and u_j overlap.

Figure: The time offset δ_k^i is from transmitter u_i to receiver r_k . The dark area at r_k represents a collision.

Collision Profile

Assume signals can propagate two hops at most.

- Since the signals from transmitter u_3 can be detected at receiver r_4 , the link $l_3 = (u_3, r_3)$ is in l_4 's collision set $\mathcal{I}(l_4)$.
- Signals from u_1 and u_2 cannot reach r_4 . Hence, l_1 and l_2 are not in $\mathcal{I}(l_4)$ and $\mathcal{I}(l_4) = \{l_3\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- ▶ $\mathcal{I}(I_1) = \{I_2, I_3, I_4\}, \mathcal{I}(I_2) = \{I_1, I_3, I_4\} \text{ and } \mathcal{I}(I_3) = \{I_2, I_4\}.$
- Collision profile $\mathcal{I} = \{\mathcal{I}(l_1), \mathcal{I}(l_2), \mathcal{I}(l_3), \mathcal{I}(l_4)\}$

Protocol Sequence

- ▶ Timeslot $n \in \mathbb{Z}$: the semi-open time interval $n \leq t < n + 1$.
- ▶ Protocol signal $s_i(t)$ assigned to transmitter u_i : l_i is active if $s_i(t) = 1$ and inactive if $s_i(t) = 0$.
- Continuous protocol signal s_i(t) can be equivalently represented by a binary protocol sequence s_i := [s_i(0), s_i(1), ..., s_i(L_i - 1)].

Figure: The protocol signal corresponding to the protocol sequence $\mathbf{s} = [1, 0, 1, 0]$. The shaded areas represent active time intervals.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Reliable Throughput Region

- Duty factor f_i for \mathbf{s}_i : the fraction of its nonzero period $f_i = \frac{1}{L_i} \sum_{t=0}^{L_i-1} s_i(t)$.
- Approachable throughput vector T = [T₁,..., T_M]: ∀ε > 0, there exist protocol signals s_i(t) for each transmitter u_i, such that the receiver r_i is able to receive correctly the packets from u_i at a rate no smaller than T_i − ε packets/timeslot, for any values of the time offsets.
- We call the collection of all approachable reliable throughput vectors reliable throughput region.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two Reliable Throughput Regions

- Slot-synchronized cases C_s: the collection of all approachable throughput vectors under arbitrary integer time offsets.
- Non-synchronized cases C_u: the collection of all approachable throughput vectors under arbitrary time offsets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Major Problems

- What is the difference in reliable throughput region between the slot-synchronized cases C_s and the non-synchronized cases C_u?
- How to construct protocol sequence to approach reliable throughputs for generalized collision channel?
- How to approach the outer boundary of reliable throughput regions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Table of Contents

Background

Problem Formulation

Reliable Throughput Region

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outer Boundary

Main Result

Theorem

Given a link set $\mathcal{L} = \{l_1, \ldots, l_M\}$ and its collision profile $\mathcal{I}, C_s = C_u$, consisting of throughput vectors $\mathbf{T} = [T_1, \ldots, T_M]$ such that

$$T_i = f_i \prod_{j: l_j \in \mathcal{I}(l_i)} (1 - f_j),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $\mathbf{f} = [f_1 \dots, f_M]$ is a duty factor vector in $[0, 1]^M$.

Shifted Protocol Sequences

- Under integer time offsets, the receivers receive packets according to a row-wise shifted protocol sequence.
- ► Transmitter u_i send signals according to $[s_i(0), s_i(1), \ldots, s_i(L-1)]$. Receiver r_j receives $[s_i(-\delta_i^j \mod L), s_i(1-\delta_i^j \mod L), \ldots, s_i(L-1-\delta_i^j \mod L)]$.

Example

Suppose transmitter u_i sends $\mathbf{s}_i = [1, 0, 1, 0]$ and $\delta_i^i = 1$. The signals received at r_i is indeed [0, 1, 0, 1].

Protocol Matrices in Generalized Collision Channel

• Protocol matrix
$$\mathbf{S} = [s_1, s_2, \dots, s_M]^{\mathsf{T}}$$
.

Each receiver r_i receives a row-wise shifted submatrix $\mathbf{S}^i[\delta]$.

Submatrix $\mathbf{S}^{i}[\delta]$: formed by a subset of $\{s_1, s_2, \ldots, s_M\}$.

Example

Suppose $\mathcal{I}(l_2) = \{l_3\}$. Let the time offsets from u_2 to r_2 be 1 and from u_3 to r_2 be 3. When the protocol matrix $\mathbf{S} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$,

the row-wise shifted submatrix $\mathbf{S}^2[\delta]$ received by r_2 is

$$\begin{bmatrix} s_2(3) & s_2(0) & s_2(1) & s_2(2) \\ s_3(1) & s_3(2) & s_3(3) & s_3(0) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Shift-Invariant (SI) Protocol Sequences

- A set of sequences {s₁, s₂,..., s_M} is SI if the resulting throughputs T₁, T₂,..., T_M remains the same under arbitrary time offsets.
- ► The sequence set {s₁, s₂,..., s_M} is SI if and only if, in the corresponding protocol matrix S, the combination of columns remains the same under arbitrary row-wise shift.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SI Protocol Sequences in Generalized Collision Channel

- Multiple access communication: S is shift-invariant.
- Generalized collision channel: Sⁱ for each receiver r_i is shift-invariant.
- Are the sequence subsets {s_i}_{i∈J(j)} still shift-invariant for all receiver r_j, j = 1, 2, ..., M?

Lemma

For any integer time offsets δ and collision set $\mathcal{I}(I_i)$ at receiver r_i , i = 1, 2, ..., M, the combination of columns in $\mathbf{S}^i[\delta]$ remains the same under arbitrary row-wise shift. All constructed \mathbf{S}^i satisfies $T_i = f_i \prod_{j: l_j \in \mathcal{I}(I_i)} (1 - f_j).$

Non-synchronized Case C_u

- Adjust constructed protocol sequences by replacing 0 with 0^k and 1 with 1^{k-1}.
- ► The positive integer k is sufficiently large, 0^k and 1^{k-1} denote a string of k zeros and a string of k 1 ones.
- All the throughput vectors are approachable using the adjusted protocol matrices for non-synchronized collision channels.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Table of Contents

Background

Problem Formulation

Reliable Throughput Region

Outer Boundary

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Outer Boundary

Outer boundary of reliable throughput region: the set of all approachable T, such that there does not exist another approachable T' with T < T'.</p>

► Each
$$T_i = f_i \prod_{j:l_j \in \mathcal{I}(l_i)} (1 - f_j)$$
 is defined by duty factors.

- Protocol sequences are constructed based on duty factors.
- Find duty factor vectors f that map to the throughput vectors on the outer boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Characterization of Outer Boundary

 $\blacktriangleright \mathbf{F} = \mathsf{diag}(\mathbf{f}).$

- I is the $M \times M$ identity matrix.
- ▶ $\mathbf{E} = [e_{ij}] \in \{0, 1\}^{M \times M}$, where $e_{ij} = 1$ if $I_i \in \mathcal{I}(I_j)$ and $e_{ij} = 0$ otherwise.

Theorem

For irreducible $\mathbf{F}(\mathbf{E} + \mathbf{I})$, the duty factor vector $\mathbf{f} \in (0, 1)^M$ determines a point on the outer boundary of a reliable throughput region if only if the Perron–Frobenius eigenvalue of $\mathbf{F}(\mathbf{E} + \mathbf{I})$ is 1.

In the collision channel model for multiple access communication, $\mathbf{E} + \mathbf{I}$ is a matrix of all ones. Then the condition in Theorem. 5 is $\sum_{i=1}^{M} f_i = 1$, consistent to the result in [3].

References I

Y. Chen, Y.-H. Lo, K. W. Shum, W. S. Wong, and Y. Zhang. CRT sequences with applications to collision channels allowing successive interference cancellation. *IEEE Transactions on Information Theory*, 64(4):2910–2923, 2018.

- M. Chitre, M. Motani, and S. Shahabudeen.
 Throughput of networks with large propagation delays.
 IEEE Journal of Oceanic Engineering, 37(4):645–658, 2012.
- J. Massey and P. Mathys.

The collision channel without feedback.

IEEE Transactions on Information Theory, 31(2):192–204, 1985.

References II

K. W. Shum, C. S. Chen, C. W. Sung, and W. S. Wong. Shift-invariant protocol sequences for the collision channel without feedback.

IEEE Transactions on Information Theory, 55(7):3312–3322, 2009.

W. S. Wong.

New protocol sequences for random-access channels without feedback.

IEEE Transactions on Information Theory, 53(6):2060–2071, 2007.