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Background



Traditional Framed Scheduling in Radio Communications

• Data frame length is much longer than the propagation delay.

• Without delay: a collision occurs if two nodes transmit

simultaneously.
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Signal Propagation Delay vs Data Frame Size

Underwater Satellite Cellular

acoustic radio radio

Propagation delay 3.3s 0.12s 0.033ms

Frame size 10s 0.5s 10ms

Propagation speed 1.5km/s 3× 105km/s 3× 105km/s

Transmission range 3km 3.6× 104km 10km
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Scheduling with Long Propagation Delay

• Scheduling can benefit from the propagation delay to improve

the throughput hsu2009st, guan2011mac,

chitre2012throughput, anjangi16, bai2017throughput,

ma2019hybrid.

• For a network consisting of K communication pairs designed
in chitre2012throughput,

• The total throughput can be K when delay is considered.

• Without making use of the delays, the total throughput is less

than 1.

• In other words, the gain by considering delay is at least K.
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Problem Overview

• Both slotted chitre2012throughput, tong2016strategies,

bai2017throughput and unslotted

scheduling anjangi2016unslotted, anjangi2017propagation

have been studied when propagation delay is taken into

consideration.

• Interference alignment is a special case under the model of

this paper.
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Problem Formulation



Network Model with Delay

• A network of three nodes labelled by 1, 2, 3, where

d(1, 2) =
√

2 and d(3, 2) =
√

5.

• Two links l1 = (1, 2) and l2 = (3, 2), which have collision to

each other (i.e., I(l1) = {l2} and I(l2) = {l1})

node 1
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Link-wise Network Model

• Define the link-wise delay between l = (s, t) and l′ = (s′, t′)

by D(l, l′) = d(s, t)− d(s′, t).

• A network N = (L, I, D) is a directed, weighted graph:

• Vertex set L represents the communication links.

• Directed edge set I = (I(l), l ∈ L) specifies collision relations

among links.

• Weight matrix D = (D(l, l′), l, l′ ∈ L) tells the delays.

l1 l2

√
2−
√

5

√
5−
√

2

In the previous example,

D(l1, l2) =
√

2 −
√

5 and

D(l2, l1) =
√

5−
√

2
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Scheduling

• For each link l, a schedule Sl is a sequence of disjoint, closed

intervals, called the active intervals of link l. For example:

Sl = {[0, 1], [2, 3], [4, 5], · · · }
Sl′ = {[0.4, 1.3], [2.5, 3.3], [4.5, 5.3], . . .}

• A schedule is also written as the union of these intervals:

Sl = [0, 1] ∪ [2, 3] ∪ [4, 5] ∪ · · ·
Sl′ = [0.4, 1.3] ∪ [2.5, 3.3] ∪ [4.5, 5.3] ∪ · · ·

• A schedule is collision free if the Lebesgue measure

λ(Sl′ ∩ (Sl +D(l, l′))) is 0 for all l and l′ such that l′ ∈ I(l).

Sl

Sl′
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ω-Scheduling

• A practical communication device cannot transmit signals in

arbitrarily short time intervals.

• Assume the length of any active interval is bounded below.

• A schedule S = (Sl, l ∈ L) is called an ω-schedule if the

length of any active interval in S is bounded below by ω.

• The following is a 0.8-schedule.

Sl = {[0, 1], [2, 3], [4, 5]}
Sl′ = {[0.4, 1.3], [2.5, 3.3], [4.5, 5.3]}
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Scheduling Rate Region

• For a collision-free schedule S = (Sl, l ∈ L), the rate vector

(RS(l), l ∈ L) has

RS(l) = lim
T→∞

λ(Sl ∩ [0, T ])

T
.

• RS(l) is the fraction of the time that the link l is active.

• A vector R is ω-achievable if for any ε > 0, there exists a

collision-free ω-schedule S, such that RS(l) > R(l)− ε, ∀l.
• The ω-scheduling rate region, denoted by R̃(ω,D), is the

collection of all the ω-achievable rate vectors.
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Major Research Issues of the General Case

• How to characterize the rate region?

• Continuous schedules

• General non-zero delays

• How to handle the delay measurement error or delay
dynamics?

• Delays cannot be measured without errors.

• Delays change over time.

• How large gain can be obtained by considering delays?
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Basic Properties

• R̃(ω,D) is convex and achievable by periodic scheduling.

• R̃(ω,D) = R̃(αω, αD) for α > 0.

Theorem (Continuity of ω-Scheduling Rate Region)
Let δ = ‖D−D′‖∞. For any ω > 2δ and R ∈ R̃(ω,D), there exist

ω′ ∈ [ω − 2δ, ω] and R′ ∈ R̃(ω′, D′) such that ‖R−R′‖∞ < 2δ
ω .
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Aligned Discrete Scheduling



Discrete and Slotted Scheduling

• A schedule is called a discrete schedule with timeslot size ∆ if

the lengths of all active/inactive intervals are multiples of ∆.

Sl
Sl′

• A discrete schedule with timeslot size ∆ is said to be aligned

to 0 if any boundary t of an active interval satisfies t ≡ 0

mod ∆. A discrete schedule aligned to 0 is also called a

slotted schedule.

Sl
Sl′

• A slotted schedule can be represented by a binary matrix.
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Discrete Delay Matrices

• A delay matrix is said to be discrete if all the entries are

multiples of a positive value ∆. Both integer and rational

delay matrices are discrete.

• The collection R(∆, D) of all such achievable rate vectors by

discrete scheduling with timeslot size ∆ is called the discrete

rate region.

Theorem
For an integer delay matrix D, R(1, D) = R̃(ω,D) for any

0 < ω ≤ 1.
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Approximation by Rational Models



Approximation of Irrational Delays: Rounding

Approximation of a network N = (L, I, D) by

rounding chitre2012throughput:

• Round D to rational D′ such that

‖D −D′‖∞ ≤ 5× 10−(n+1).

• For any R ∈ R(1, 10nD′), there exists R′ ∈ R̃(ω,D) with

ω ∈ (0, 10−n], such that ‖R−R′‖∞ < 1.

• Approximation by rounding works for some

cases chitre2012throughput.

Theorem
Let δ = ‖D−D′‖∞. For any ω > 2δ and R ∈ R̃(ω,D), there exist

ω′ ∈ [ω − 2δ, ω] and R′ ∈ R̃(ω′, D′) such that ‖R−R′‖∞ < 2δ
ω .

16



Approximation of Irrational Delays: Dirichlet’s Theorem

Theorem (Dirichlet’s theorem on simultaneous approximation)
Suppose α1, α2, . . . , αn are n real numbers and Q > 1 is an

integer, then there exist integers q, p1, p2, . . . , pn with greatest

common divisor (GCD) 1, such that

1 ≤ q < Qn and |αi − pi/q| ≤ 1/(qQ), 1 ≤ i ≤ n.

Approximation of a network N = (L, I, D) by Dirichlet’s theorem:

• Fix an integer Q > 1. There exist integers q, pl,l′ for l, l′ ∈ L
such that 1 ≤ q < Q|L|

2
and |D(l, l′)− pl,l′

q | ≤
1
qQ .

• For any R ∈ R(1, qD′), there exists R′ ∈ R̃(Q−2qQ , D) such

that ‖R−R′‖∞ < 2/(Q− 2).
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Example

Consider the matrix

D =

 0
√

2
√

3√
2 0

√
5√

3
√

5 0

 . (1)

Q 5 10 15 20

Q3 125 1000 3375 8000

q 123 881 2728 4109

p2 174 1246 3858 5811

p3 213 1526 4725 7117

p5 275 1970 6100 9188

10−5 maxi |
√
i− pi/q| 40 8.8 0.93 0.086

10−5/(qQ) 160 11 2.4 1.2
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Circular K-Pair Network (General K-pair?)

• By Dirichlet’s theorem, we can construct more networks with

unbounded total throughput gain when considering delay in

scheduling.

circular

K-pair

network
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