Continuity of Link Scheduling Rate Region for Wireless Networks with Propagation Delays

Yijun Fan 1 , Yanxiao Liu 2 and Shenghao Yang 1 Jun 20, 2022 IEEE ISIT 2022

¹School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China ²Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China

[Outline](#page-1-0)

[Background](#page-3-0)

[Problem Formulation](#page-8-0)

[Aligned Discrete Scheduling](#page-16-0)

[Approximation by Rational Models](#page-19-0)

[Background](#page-3-0)

Traditional Framed Scheduling in Radio Communications

- Data frame length is much longer than the propagation delay.
- Without delay: a collision occurs if two nodes transmit simultaneously.

- Scheduling can benefit from the propagation delay to improve the throughput hsu2009st, guan2011mac, chitre2012throughput, anjangi16, bai2017throughput, ma2019hybrid.
- For a network consisting of K communication pairs designed in chitre2012throughput,
	- The total throughput can be K when delay is considered.
	- Without making use of the delays, the total throughput is less than 1.
- In other words, the gain by considering delay is at least K .
- Both slotted chitre2012throughput, tong2016strategies, bai2017throughput and unslotted scheduling anjangi2016unslotted, anjangi2017propagation have been studied when propagation delay is taken into consideration.
- Interference alignment is a special case under the model of this paper.

[Problem Formulation](#page-8-0)

Network Model with Delay

- A network of three nodes labelled by $1, 2, 3$, where $d(1, 2) = \sqrt{2}$ and $d(3, 2) = \sqrt{5}$.
- Two links $l_1 = (1, 2)$ and $l_2 = (3, 2)$, which have collision to each other (i.e., $\mathcal{I}(l_1) = \{l_2\}$ and $\mathcal{I}(l_2) = \{l_1\}$)

Link-wise Network Model

- Define the link-wise delay between $l = (s, t)$ and $l' = (s', t')$ by $D(l, l') = d(s, t) - d(s', t)$.
- A network $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D)$ is a directed, weighted graph:
	- Vertex set $\mathcal L$ represents the communication links.
	- Directed edge set $\mathcal{I} = (\mathcal{I}(l), l \in \mathcal{L})$ specifies collision relations among links.
	- Weight matrix $D = (D(l, l'), l, l' \in \mathcal{L})$ tells the delays.

In the previous example, $D(l_1, l_2) = \sqrt{2} -$ √ 5 and $D(t_1, t_2) = \sqrt{5} - D(t_2, t_1) = \sqrt{5} -$ √ 2

Scheduling

 $\bullet\,$ For each link l , a schedule \mathcal{S}_l is a sequence of disjoint, closed intervals, called the active intervals of link l. For example:

$$
\mathcal{S}_l = \{ [0, 1], [2, 3], [4, 5], \cdots \}
$$

$$
\mathcal{S}_{l'} = \{ [0.4, 1.3], [2.5, 3.3], [4.5, 5.3], \cdots \}
$$

• A schedule is also written as the union of these intervals:

$$
S_l = [0, 1] \cup [2, 3] \cup [4, 5] \cup \cdots
$$

$$
S_{l'} = [0.4, 1.3] \cup [2.5, 3.3] \cup [4.5, 5.3] \cup \cdots
$$

• A schedule is collision free if the Lebesgue measure $\lambda(\mathcal{S}_{l'} \cap (\mathcal{S}_l + D(l, l')))$ is 0 for all l and l' such that $l' \in \mathcal{I}(l)$.

- A practical communication device cannot transmit signals in arbitrarily short time intervals.
- Assume the length of any active interval is bounded below.
- $\bullet\,$ A schedule $\mathcal{S}=(\mathcal{S}_l,l\in\mathcal{L})$ is called an ω -schedule if the length of any active interval in S is bounded below by ω .
- The following is a 0.8-schedule.

 $S_l = \{ [0, 1], [2, 3], [4, 5] \}$ $\mathcal{S}_{l'} = \{ [0.4, 1.3], [2.5, 3.3], [4.5, 5.3] \}$ $\bullet\,$ For a collision-free schedule $\mathcal{S}=(\mathcal{S}_l,l\in\mathcal{L}),$ the rate vector $(R_{\mathcal{S}}(l), l \in \mathcal{L})$ has

$$
R_{\mathcal{S}}(l) = \lim_{T \to \infty} \frac{\lambda(\mathcal{S}_l \cap [0,T])}{T}.
$$

- $R_{\mathcal{S}}(l)$ is the fraction of the time that the link l is active.
- A vector R is ω -achievable if for any $\epsilon > 0$, there exists a collision-free ω -schedule S, such that $R_{\mathcal{S}}(l) > R(l) - \epsilon$, $\forall l$.
- The ω -scheduling rate region, denoted by $\mathcal{R}(\omega, D)$, is the collection of all the ω-achievable rate vectors.
- How to characterize the rate region?
	- Continuous schedules
	- General non-zero delays
- How to handle the delay measurement error or delay dynamics?
	- Delays cannot be measured without errors.
	- Delays change over time.
- How large gain can be obtained by considering delays?
- $\mathcal{R}(\omega, D)$ is convex and achievable by periodic scheduling.
- $\widetilde{\mathcal{R}}(\omega, D) = \widetilde{\mathcal{R}}(\alpha\omega, \alpha D)$ for $\alpha > 0$.

Theorem (Continuity of ω -Scheduling Rate Region) Let $\delta = ||D - D'||_{\infty}$. For any $\omega > 2\delta$ and $R \in \mathcal{R}(\omega, D)$, there exist $\omega' \in [\omega - 2\delta, \omega]$ and $R' \in \widetilde{\mathcal{R}}(\omega', D')$ such that $\|R - R'\|_{\infty} < \frac{2\delta}{\omega}$ $\frac{2\delta}{\omega}$.

[Aligned Discrete Scheduling](#page-16-0)

• A schedule is called a discrete schedule with *timeslot size* Δ if the lengths of all active/inactive intervals are multiples of Δ .

• A discrete schedule with timeslot size Δ is said to be aligned to 0 if any boundary t of an active interval satisfies $t \equiv 0$ mod Δ . A discrete schedule aligned to 0 is also called a slotted schedule.

• A slotted schedule can be represented by a binary matrix.

- A delay matrix is said to be discrete if all the entries are multiples of a positive value Δ . Both integer and rational delay matrices are discrete.
- The collection $\mathcal{R}(\Delta, D)$ of all such achievable rate vectors by discrete scheduling with timeslot size Δ is called the discrete rate region.

Theorem

For an integer delay matrix D, $\mathcal{R}(1, D) = \widetilde{\mathcal{R}}(\omega, D)$ for any $0 < \omega \leq 1$.

[Approximation by Rational Models](#page-19-0)

Approximation of a network $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D)$ by rounding chitre2012throughput:

- Round D to rational D' such that $||D - D'||_{\infty} \leq 5 \times 10^{-(n+1)}$.
- For any $R \in \mathcal{R}(1, 10^n D')$, there exists $R' \in \mathcal{R}(\omega, D)$ with $\omega \in (0, 10^{-n}]$, such that $\|R - R'\|_{\infty} < 1$.
- Approximation by rounding works for some cases chitre2012throughput.

Theorem

Let $\delta = ||D - D'||_{\infty}$. For any $\omega > 2\delta$ and $R \in \mathcal{R}(\omega, D)$, there exist $\omega' \in [\omega - 2\delta, \omega]$ and $R' \in \widetilde{\mathcal{R}}(\omega', D')$ such that $\|R - R'\|_{\infty} < \frac{2\delta}{\omega}$ $\frac{2\delta}{\omega}$.

Theorem (Dirichlet's theorem on simultaneous approximation) Suppose $\alpha_1, \alpha_2, \ldots, \alpha_n$ are n real numbers and $Q > 1$ is an integer, then there exist integers q, p_1, p_2, \ldots, p_n with greatest common divisor (GCD) 1, such that

$$
1\leq q
$$

Approximation of a network $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D)$ by Dirichlet's theorem:

- Fix an integer $Q > 1$. There exist integers q, $p_{l,l'}$ for $l, l' \in \mathcal{L}$ such that $1 \leq q < Q^{|\mathcal{L}|^2}$ and $|D(l,l') - \frac{p_{l,l'}}{q}$ $\frac{d}{q}$ $\mid \leq \frac{1}{qQ}$.
- For any $R \in \mathcal{R}(1,qD'),$ there exists $R' \in \widetilde{\mathcal{R}}(\frac{Q-2}{qQ},D)$ such that $||R - R'||_{\infty} < 2/(Q - 2)$.

Example

Consider the matrix

$$
D = \begin{bmatrix} 0 & \sqrt{2} & \sqrt{3} \\ \sqrt{2} & 0 & \sqrt{5} \\ \sqrt{3} & \sqrt{5} & 0 \end{bmatrix} .
$$
 (1)

Circular K-Pair Network (General K-pair?)

• By Dirichlet's theorem, we can construct more networks with unbounded total throughput gain when considering delay in scheduling.

References i