Continuity of Link Scheduling Rate Region for Wireless Networks with Propagation Delays

Yijun Fan¹, Yanxiao Liu² and Shenghao Yang¹ Jun 20, 2022 IEEE ISIT 2022

¹School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China ²Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China

Outline

Background

Problem Formulation

Aligned Discrete Scheduling

Approximation by Rational Models

Background

Traditional Framed Scheduling in Radio Communications

- Data frame length is much longer than the propagation delay.
- Without delay: a collision occurs if two nodes transmit simultaneously.

	Underwater acoustic	Satellite radio	Cellular radio
Propagation delay	3.3s	0.12s	0.033ms
Frame size	10 s	0.5s	10 ms
Propagation speed	$1.5 \mathrm{km/s}$	$3 imes 10^5 {\rm km/s}$	$3 imes 10^5 {\rm km/s}$
Transmission range	3km	$3.6\times 10^4 \rm km$	10km

- Scheduling can benefit from the propagation delay to improve the throughput hsu2009st, guan2011mac, chitre2012throughput, anjangi16, bai2017throughput, ma2019hybrid.
- For a network consisting of *K* communication pairs designed in **chitre2012throughput**,
 - The total throughput can be K when delay is considered.
 - Without making use of the delays, the total throughput is less than 1.
- In other words, the gain by considering delay is at least K.

- Both slotted chitre2012throughput, tong2016strategies, bai2017throughput and unslotted scheduling anjangi2016unslotted, anjangi2017propagation have been studied when propagation delay is taken into consideration.
- Interference alignment is a special case under the model of this paper.

Problem Formulation

Network Model with Delay

- A network of three nodes labelled by 1,2,3, where $d(1,2) = \sqrt{2}$ and $d(3,2) = \sqrt{5}$.
- Two links $l_1 = (1, 2)$ and $l_2 = (3, 2)$, which have collision to each other (i.e., $\mathcal{I}(l_1) = \{l_2\}$ and $\mathcal{I}(l_2) = \{l_1\}$)

Link-wise Network Model

- Define the link-wise delay between l = (s, t) and l' = (s', t') by D(l, l') = d(s, t) d(s', t).
- A network $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D)$ is a directed, weighted graph:
 - $\bullet~$ Vertex set ${\cal L}$ represents the communication links.
 - Directed edge set *I* = (*I*(*l*), *l* ∈ *L*) specifies collision relations among links.
 - Weight matrix $D = (D(l, l'), l, l' \in \mathcal{L})$ tells the delays.

In the previous example, $D(l_1, l_2) = \sqrt{2} - \sqrt{5} \text{ and } D(l_2, l_1) = \sqrt{5} - \sqrt{2}$

Scheduling

• For each link *l*, a schedule S_l is a sequence of disjoint, closed intervals, called the active intervals of link *l*. For example:

$$S_l = \{[0, 1], [2, 3], [4, 5], \cdots \}$$
$$S_{l'} = \{[0.4, 1.3], [2.5, 3.3], [4.5, 5.3], \ldots \}$$

• A schedule is also written as the union of these intervals:

$$S_l = [0, 1] \cup [2, 3] \cup [4, 5] \cup \cdots$$
$$S_{l'} = [0.4, 1.3] \cup [2.5, 3.3] \cup [4.5, 5.3] \cup \cdots$$

• A schedule is collision free if the Lebesgue measure $\lambda(S_{l'} \cap (S_l + D(l, l')))$ is 0 for all l and l' such that $l' \in \mathcal{I}(l)$.

- A practical communication device cannot transmit signals in arbitrarily short time intervals.
- Assume the length of any active interval is bounded below.
- A schedule S = (S_l, l ∈ L) is called an ω-schedule if the length of any active interval in S is bounded below by ω.
- The following is a 0.8-schedule.

$$S_l = \{[0, 1], [2, 3], [4, 5]\}$$
$$S_{l'} = \{[0.4, 1.3], [2.5, 3.3], [4.5, 5.3]\}$$

• For a collision-free schedule $S = (S_l, l \in L)$, the rate vector $(R_S(l), l \in L)$ has

$$R_{\mathcal{S}}(l) = \lim_{T \to \infty} \frac{\lambda(\mathcal{S}_l \cap [0, T])}{T}.$$

- $R_{\mathcal{S}}(l)$ is the fraction of the time that the link l is active.
- A vector R is ω-achievable if for any ε > 0, there exists a collision-free ω-schedule S, such that R_S(l) > R(l) − ε, ∀l.
- The ω-scheduling rate region, denoted by *<i>R*(ω, D), is the collection of all the ω-achievable rate vectors.

- How to characterize the rate region?
 - Continuous schedules
 - General non-zero delays
- How to handle the delay measurement error or delay dynamics?
 - Delays cannot be measured without errors.
 - Delays change over time.
- How large gain can be obtained by considering delays?

- $\widetilde{\mathcal{R}}(\omega, D)$ is convex and achievable by periodic scheduling.
- $\widetilde{\mathcal{R}}(\omega, D) = \widetilde{\mathcal{R}}(\alpha \omega, \alpha D)$ for $\alpha > 0$.

Theorem (Continuity of ω -Scheduling Rate Region) Let $\delta = \|D - D'\|_{\infty}$. For any $\omega > 2\delta$ and $R \in \widetilde{\mathcal{R}}(\omega, D)$, there exist $\omega' \in [\omega - 2\delta, \omega]$ and $R' \in \widetilde{\mathcal{R}}(\omega', D')$ such that $\|R - R'\|_{\infty} < \frac{2\delta}{\omega}$.

Aligned Discrete Scheduling

Discrete and Slotted Scheduling

 A schedule is called a discrete schedule with timeslot size Δ if the lengths of all active/inactive intervals are multiples of Δ.

 A discrete schedule with timeslot size Δ is said to be aligned to 0 if any boundary t of an active interval satisfies t = 0 mod Δ. A discrete schedule aligned to 0 is also called a slotted schedule.

• A slotted schedule can be represented by a binary matrix.

- A delay matrix is said to be discrete if all the entries are multiples of a positive value Δ. Both integer and rational delay matrices are discrete.
- The collection $\mathcal{R}(\Delta, D)$ of all such achievable rate vectors by discrete scheduling with timeslot size Δ is called the discrete rate region.

Theorem

For an integer delay matrix D, $\mathcal{R}(1,D) = \widetilde{\mathcal{R}}(\omega,D)$ for any $0 < \omega \leq 1$.

Approximation by Rational Models

Approximation of a network $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D)$ by rounding **chitre2012throughput**:

- Round D to rational D' such that $\|D D'\|_{\infty} \le 5 \times 10^{-(n+1)}.$
- For any $R \in \mathcal{R}(1, 10^n D')$, there exists $R' \in \widetilde{\mathcal{R}}(\omega, D)$ with $\omega \in (0, 10^{-n}]$, such that $||R R'||_{\infty} < 1$.
- Approximation by rounding works for some cases chitre2012throughput.

Theorem

Let $\delta = \|D - D'\|_{\infty}$. For any $\omega > 2\delta$ and $R \in \widetilde{\mathcal{R}}(\omega, D)$, there exist $\omega' \in [\omega - 2\delta, \omega]$ and $R' \in \widetilde{\mathcal{R}}(\omega', D')$ such that $\|R - R'\|_{\infty} < \frac{2\delta}{\omega}$.

Theorem (Dirichlet's theorem on simultaneous approximation) Suppose $\alpha_1, \alpha_2, ..., \alpha_n$ are n real numbers and Q > 1 is an integer, then there exist integers $q, p_1, p_2, ..., p_n$ with greatest common divisor (GCD) 1, such that

$$1 \le q < Q^n$$
 and $|\alpha_i - p_i/q| \le 1/(qQ), \ 1 \le i \le n.$

Approximation of a network $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D)$ by Dirichlet's theorem:

- Fix an integer Q > 1. There exist integers $q, p_{l,l'}$ for $l, l' \in \mathcal{L}$ such that $1 \leq q < Q^{|\mathcal{L}|^2}$ and $|D(l, l') \frac{p_{l,l'}}{q}| \leq \frac{1}{qQ}$.
- For any $R \in \mathcal{R}(1, qD')$, there exists $R' \in \widetilde{\mathcal{R}}(\frac{Q-2}{qQ}, D)$ such that $||R R'||_{\infty} < 2/(Q-2)$.

Example

Consider the matrix

$$D = \begin{bmatrix} 0 & \sqrt{2} & \sqrt{3} \\ \sqrt{2} & 0 & \sqrt{5} \\ \sqrt{3} & \sqrt{5} & 0 \end{bmatrix}.$$
 (1)

Q	5	10	15	20
Q^3	125	1000	3375	8000
q	123	881	2728	4109
p_2	174	1246	3858	5811
p_3	213	1526	4725	7117
p_5	275	1970	6100	9188
$10^{-5} \max_i \sqrt{i} - p_i/q $	40	8.8	0.93	0.086
$10^{-5}/(qQ)$	160	11	2.4	1.2

Circular *K*-**Pair Network** (General *K*-**pair**?)

• By Dirichlet's theorem, we can construct more networks with unbounded total throughput gain when considering delay in scheduling.

References i