Continuity of Link Scheduling Rate Region for Wireless Networks with Propagation Delays

Yijun Fan1, Yanxiao Liu2 and Shenghao Yang1

Jun 20, 2022
IEEE ISIT 2022

1School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
2Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China
Outline
Outline

Background

Problem Formulation

Aligned Discrete Scheduling

Approximation by Rational Models
Background
- Data frame length is much longer than the propagation delay.
- Without delay: a collision occurs if two nodes transmit simultaneously.
Signal Propagation Delay vs Data Frame Size

<table>
<thead>
<tr>
<th></th>
<th>Underwater acoustic</th>
<th>Satellite radio</th>
<th>Cellular radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation delay</td>
<td>3.3s</td>
<td>0.12s</td>
<td>0.033ms</td>
</tr>
<tr>
<td>Frame size</td>
<td>10s</td>
<td>0.5s</td>
<td>10ms</td>
</tr>
<tr>
<td>Propagation speed</td>
<td>1.5km/s</td>
<td>3×10^5km/s</td>
<td>3×10^5km/s</td>
</tr>
<tr>
<td>Transmission range</td>
<td>3km</td>
<td>3.6×10^4km</td>
<td>10km</td>
</tr>
</tbody>
</table>
Scheduling can benefit from the propagation delay to improve the throughput hsu2009st, guan2011mac, chitre2012throughput, anjiangi16, bai2017throughput, ma2019hybrid.

For a network consisting of K communication pairs designed in chitre2012throughput,

- The total throughput can be K when delay is considered.
- Without making use of the delays, the total throughput is less than 1.

In other words, the gain by considering delay is at least K.
Problem Overview

- Both slotted chitre2012throughput, tong2016strategies, bai2017throughput and unslotted scheduling anjangi2016unslotted, anjangi2017propagation have been studied when propagation delay is taken into consideration.

- Interference alignment is a special case under the model of this paper.
Problem Formulation
Network Model with Delay

- A network of three nodes labelled by 1, 2, 3, where $d(1, 2) = \sqrt{2}$ and $d(3, 2) = \sqrt{5}$.
- Two links $l_1 = (1, 2)$ and $l_2 = (3, 2)$, which have collision to each other (i.e., $\mathcal{I}(l_1) = \{l_2\}$ and $\mathcal{I}(l_2) = \{l_1\}$)

\begin{center}
\begin{tikzpicture}[scale=0.8]
 \node (n1) at (0,0) {node 1};
 \node (n2) at (2,0) {node 2};
 \node (n3) at (4,0) {node 3};
 \node (t1) at (0,2) {Θ_1};
 \node (t2) at (4,2) {Θ_2};
 \node (t3) at (2,2) {Θ_3};

 \draw[->, dashed] (n1) -- (t1);
 \draw[dashed] (n1) -- (n2);
 \draw[->, dashed] (n2) -- (t2);
 \draw[dashed] (n2) -- (n3);
 \draw[->, dashed] (n3) -- (t3);
 \draw[dashed] (n3) -- (n1);

 \draw[->, thick] (n1) -- (2,1) -- (n2);
 \draw[->, thick] (2,1) -- (n3);
 \draw[->, thick] (n3) -- (4,1) -- (n1);

 \node[below] at (2,0) {$\sqrt{2}$};
 \node[below] at (4,0) {$\sqrt{5}$};
 \node[above] at (2,2) {$\sqrt{2}$};

 \node[above] at (0,2) {time};
 \node[above] at (4,2) {time};

\end{tikzpicture}
\end{center}
• Define the link-wise delay between \(l = (s, t) \) and \(l' = (s', t') \) by \(D(l, l') = d(s, t) - d(s', t) \).

• A network \(\mathcal{N} = (\mathcal{L}, \mathcal{I}, D) \) is a directed, weighted graph:
 - Vertex set \(\mathcal{L} \) represents the communication links.
 - Directed edge set \(\mathcal{I} = (\mathcal{I}(l), l \in \mathcal{L}) \) specifies collision relations among links.
 - Weight matrix \(D = (D(l, l'), l, l' \in \mathcal{L}) \) tells the delays.

In the previous example,
\[
D(l_1, l_2) = \sqrt{2} - \sqrt{5} \quad \text{and} \quad D(l_2, l_1) = \sqrt{5} - \sqrt{2}
\]
• For each link l, a schedule S_l is a sequence of disjoint, closed intervals, called the **active intervals** of link l. For example:

$$S_l = \{[0, 1], [2, 3], [4, 5], \ldots\}$$

$$S_{l'} = \{[0.4, 1.3], [2.5, 3.3], [4.5, 5.3], \ldots\}$$

• A schedule is also written as the union of these intervals:

$$S_l = [0, 1] \cup [2, 3] \cup [4, 5] \cup \cdots$$

$$S_{l'} = [0.4, 1.3] \cup [2.5, 3.3] \cup [4.5, 5.3] \cup \cdots$$

• A schedule is **collision free** if the Lebesgue measure $\lambda(S_{l'} \cap (S_l + D(l, l')))$ is 0 for all l and l' such that $l' \in \mathcal{I}(l)$.
• A practical communication device cannot transmit signals in arbitrarily short time intervals.
• Assume the length of any active interval is bounded below.
• A schedule $S = (S_l, l \in \mathcal{L})$ is called an ω-schedule if the length of any active interval in S is bounded below by ω.
• The following is a 0.8-schedule.

$$S_l = \{[0, 1], [2, 3], [4, 5]\}$$
$$S_l' = \{[0.4, 1.3], [2.5, 3.3], [4.5, 5.3]\}$$
Scheduling Rate Region

- For a collision-free schedule $S = (S_l, l \in \mathcal{L})$, the rate vector $(R_S(l), l \in \mathcal{L})$ has

$$R_S(l) = \lim_{T \to \infty} \frac{\lambda(S_l \cap [0, T])}{T}.$$

- $R_S(l)$ is the fraction of the time that the link l is active.

- A vector R is ω-achievable if for any $\epsilon > 0$, there exists a collision-free ω-schedule S, such that $R_S(l) > R(l) - \epsilon$, $\forall l$.

- The ω-scheduling rate region, denoted by $\tilde{R}(\omega, D)$, is the collection of all the ω-achievable rate vectors.
Major Research Issues of the General Case

- How to characterize the rate region?
 - Continuous schedules
 - General non-zero delays

- How to handle the delay measurement error or delay dynamics?
 - Delays cannot be measured without errors.
 - Delays change over time.

- How large gain can be obtained by considering delays?
Basic Properties

- $\tilde{\mathcal{R}}(\omega, D)$ is **convex** and achievable by periodic scheduling.
- $\tilde{\mathcal{R}}(\omega, D) = \tilde{\mathcal{R}}(\alpha\omega, \alpha D)$ for $\alpha > 0$.

Theorem (Continuity of ω-Scheduling Rate Region)

Let $\delta = \|D - D'\|_{\infty}$. For any $\omega > 2\delta$ and $R \in \tilde{\mathcal{R}}(\omega, D)$, there exist $\omega' \in [\omega - 2\delta, \omega]$ and $R' \in \tilde{\mathcal{R}}(\omega', D')$ such that $\|R - R'\|_{\infty} < \frac{2\delta}{\omega}$.
Aligned Discrete Scheduling
A schedule is called a **discrete schedule with timeslot size** Δ if the lengths of all active/inactive intervals are multiples of Δ.

A discrete schedule with timeslot size Δ is said to be **aligned to 0** if any boundary t of an active interval satisfies $t \equiv 0 \mod \Delta$. A discrete schedule aligned to 0 is also called a **slotted schedule**.

A slotted schedule can be represented by a binary matrix.
A delay matrix is said to be discrete if all the entries are multiples of a positive value Δ. Both integer and rational delay matrices are discrete.

The collection $\mathcal{R}(\Delta, D)$ of all such achievable rate vectors by discrete scheduling with timeslot size Δ is called the discrete rate region.

Theorem

*For an integer delay matrix D, $\mathcal{R}(1, D) = \tilde{\mathcal{R}}(\omega, D)$ for any $0 < \omega \leq 1$.***
Approximation by Rational Models
Approximation of a network $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D)$ by rounding chitre2012throughput:

- Round D to rational D' such that $\|D - D'\|_\infty \leq 5 \times 10^{-(n+1)}$.
- For any $R \in \mathcal{R}(1, 10^n D')$, there exists $R' \in \tilde{\mathcal{R}}(\omega, D)$ with $\omega \in (0, 10^{-n}]$, such that $\|R - R'\|_\infty < 1$.
- Approximation by rounding works for some cases chitre2012throughput.

Theorem

Let $\delta = \|D - D'\|_\infty$. For any $\omega > 2\delta$ and $R \in \tilde{\mathcal{R}}(\omega, D)$, there exist $\omega' \in [\omega - 2\delta, \omega]$ and $R' \in \tilde{\mathcal{R}}(\omega', D')$ such that $\|R - R'\|_\infty < \frac{2\delta}{\omega}$.
Theorem (Dirichlet’s theorem on simultaneous approximation)
Suppose $\alpha_1, \alpha_2, \ldots, \alpha_n$ are n real numbers and $Q > 1$ is an integer, then there exist integers q, p_1, p_2, \ldots, p_n with greatest common divisor (GCD) 1, such that

$$1 \leq q < Q^n \quad \text{and} \quad |\alpha_i - p_i/q| \leq 1/(qQ), \ 1 \leq i \leq n.$$

Approximation of a network $\mathcal{N} = (\mathcal{L}, \mathcal{I}, D)$ by Dirichlet’s theorem:

- Fix an integer $Q > 1$. There exist integers $q, p_{l,l'}$ for $l, l' \in \mathcal{L}$ such that $1 \leq q < Q|\mathcal{L}|^2$ and $|D(l, l') - \frac{p_{l,l'}}{q}| \leq \frac{1}{qQ}$.
- For any $R \in \mathcal{R}(1, qD')$, there exists $R' \in \tilde{\mathcal{R}}(\frac{Q-2}{qQ}, D)$ such that $\|R - R'\|_\infty < 2/(Q - 2)$.

Example

Consider the matrix

\[D = \begin{bmatrix} 0 & \sqrt{2} & \sqrt{3} \\ \sqrt{2} & 0 & \sqrt{5} \\ \sqrt{3} & \sqrt{5} & 0 \end{bmatrix} . \]

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q)</td>
<td>125</td>
<td>1000</td>
<td>3375</td>
<td>8000</td>
</tr>
<tr>
<td>(Q^3)</td>
<td>123</td>
<td>881</td>
<td>2728</td>
<td>4109</td>
</tr>
<tr>
<td>(q)</td>
<td>174</td>
<td>1246</td>
<td>3858</td>
<td>5811</td>
</tr>
<tr>
<td>(p_2)</td>
<td>213</td>
<td>1526</td>
<td>4725</td>
<td>7117</td>
</tr>
<tr>
<td>(p_3)</td>
<td>275</td>
<td>1970</td>
<td>6100</td>
<td>9188</td>
</tr>
<tr>
<td>(10^{-5} \max_i</td>
<td>\sqrt{i} - p_i/q</td>
<td>)</td>
<td>40</td>
<td>8.8</td>
</tr>
<tr>
<td>(10^{-5}/(qQ))</td>
<td>160</td>
<td>11</td>
<td>2.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Circular K-Pair Network (General K-pair?)

- By Dirichlet’s theorem, we can construct more networks with unbounded total throughput gain when considering delay in scheduling.