IERG 2470 Tutorial for Midterm Review

Yanxiao Liu

23 March 2022

Yanxiao Liu [IERG 2470 Tutorial for Midterm Review](#page-27-0) 23 March 2022 1 / 28

4 0 8

- Yanxiao Liu, 1155168298@link.cuhk.edu.hk
- Review: Chapter 1-3 sequentially with (some of) examples in lectures or questions from homework through the review.
- If you have particular questions on homeworks, please check:
	- 1 hw 1: ask Gongpu, cg019@ie.cuhk.edu.hk;
	- 2 hw 2: ask me:
	- **3** hw 3: ask Xiaohong, cx021@ie.cuhk.edu.hk;
	- ⁴ hw 4: ask Guodong, xg018@ie.cuhk.edu.hk;
- The slide and recording will be on blackboard today.
- My suggestion: although it's open-book, prepare a cheat sheet, it is the best way to review all the contents by yourselves.

Review for Sec 1.1: Preliminaries

- A statement can be True or False.
- Logic Symbols: AND/OR/NOT/Implication⇒/Equivalence⇔ The only case that $X \Rightarrow Y$ is False is: X is True and Y is False.

Establish that the statement " $x \ge 2 \Rightarrow x \ge 0$ " is True.

- Since x is not specified, interpret it as any real number.
- Verify the statement for all real numbers x .

De Morgan's law:

$$
\sim (X \vee Y) \Leftrightarrow (\sim X) \wedge (\sim Y)
$$

$$
\sim (X \wedge Y) \Leftrightarrow (\sim X) \vee (\sim Y)
$$

$$
\bullet \sim (\forall x, Y(x)) \Leftrightarrow \exists x, \sim Y(x)
$$

- A set is a collection of objects. Ω , \emptyset
- Union, Intersection, Complement, Difference, Set inclusion
- Key to not make mistake: always draw Venn diagrams!
- De Morgan's law:

$$
(A \cup B)^c = A^c \cap B^c
$$

$$
(A \cap B)^c = A^c \cup B^c
$$

• Distribution laws:

$$
A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
$$

$$
A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
$$

Review for Sec 1.3: Relation and function

• A relation between two sets A and B is a subset of $A \times B$ s.t.

$$
A \times B = \{(x, y) : x \in A, y \in B\}
$$

• A function $f : A \rightarrow B$ is a relation between A and B such that every $x \in A$ is associated with a unique element in B, denoted by $f(x)$.

• injection, surjection, bijection.

つひへ

- Direct proof;
- Prove by contradiction.
- \bullet Prove by induction(next page).

Review for Sec 1.7: Mathematical induction

- Mathematical induction:
	- **1** Base case, usually $P(n)$ for $n = 1$.
	- **2** Assume $P(n)$ is true for $n > 1$.
	- **3** Prove $P(n+1)$ is true.
- Inclusion-exclusion formula:

$$
|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|
$$

\n
$$
|A_1 \cup \cdots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \cdots + (-1)^{n+1} |A_1 \cap A_2 \cap \cdots \cap A_n|
$$

Set-additive function: $\mu : B \mapsto \mathbb{R}$ for $B \subset \Omega$ s.t. $\forall B \cap B' = \emptyset$,

$$
\mu(B\cup B')=\mu(B)+\mu(B').
$$

Eg: cardinality is a set-additive function.

IERG 2470 Homework 2

(c): Prove the binomial formula by mathematical induction. **Binomial formula:**

$$
(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^r b^{n-r}
$$

- Base case, $n=1 \Rightarrow RHS= \sum_{r=0}^1 {1 \choose r}$ \int_{r}^{1} a' b $1-r=a+b=L$ HS
- Suppose when $n=k$, $(a+b)^k = \sum_{r=0}^k {k \choose r}$ $\binom{k}{r}$ a^r b^{k-r}. When $n = k + 1$,

$$
(a + b)^{k+1} = (a + b)^{k}(a + b)
$$

= $\sum_{r=0}^{k} {k \choose r} a^{r+1} b^{k-r} + \sum_{r=0}^{k} {k \choose r} a^{r} b^{k+1-r} = \cdots$
= ${k+1 \choose 0} a^{0} b^{k+1-0} + \sum_{r=1}^{k} {k+1 \choose r} a^{r} b^{k+1-r} + {k+1 \choose k+1} a^{k+1} b^{0} = \cdots$
= $\sum_{r=0}^{k+1} {k+1 \choose r} a^{r} b^{k+1-r}$

IERG 2470 Homework 2

- 2. (Horses again!) Someone claims to have proved by mathematical induction that all the horses in the world have the same color. Here is his formulation. Let n be the number of horses in any group of horses. For all $n \geq 1$, the proposition is that all the horses in the group have the same color. Here is the proof:
	- (a) The proposition is obviously true for $n = 1$.
	- (b) Assume that the proposition is true for some $n \geq 1$. Now consider any group of $n+1$ horses. By the induction hypothesis, Horses 1 to n, which is a group of n horses, have the same color. Again by the induction hypothesis, Horses 2 to $n+1$ have the same color. Since Horses 2 to n are common to both groups of n horses, the two groups of n horses must have the same color. Therefore, we conclude that Horses 1 to $n+1$ all have the same color.

Are you convinced?

• Hint: consider $n = 1$ to $n = 2$.

Review for Sec 1.8: Combinatorics

- Factorial: number of ways to order n balls is $n!$.
- Permutation: pick k balls in an ordered manner from n ball:

$$
P(n,k)=\frac{n!}{(n-k)!}
$$

• Combination: pick k balls in an unordered manner from n ball:

$$
C(n,k)=\frac{P(n,k)}{k!}=\frac{n!}{k!(n-k)!}=\binom{n}{k}
$$

o binomial formula:

$$
(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^r b^{n-r}
$$

- • sample space $Ω$: all possible outcomes.
- set function $P: 0 \le P(E) \le 1$ for $\forall E \subset \Omega$; $P(\Omega) = 1$; $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$. axioms of probability.
- o outcome: $\omega \in \Omega$.
- e event: $E \subset \Omega$, occurs if $\omega \in E$.
- Probability: $P(E)$: probability that event E occurs.
- **•** Corollary:

\n- **①**
$$
P(\emptyset) = 0
$$
.
\n- **②** $P(A^C) = 1 - P(A)$
\n- **②** $P(A) \leq P(B)$ if $A \subset B$.
\n

Review for Sec 2.2: Probability as a state of knowledge

• Conditioning:

• Let $f(\cdot)$ denote fraction,

$$
f(J|M) = \frac{|J \cap M|}{|M|} = \frac{f(J \cap M)}{f(M)}\Big|_{\{J:\mathcal{J} \times \mathcal{J} \times
$$

• The probability of event A conditioning on event B is

$$
P(A|B) = \frac{P(A \cap B)}{P(B)}
$$

Review for Sec 2.4: The law of total probability and the Bayes theorem

• A collection of sets ${B_i}$ is a partition of Ω if

$$
\bigcup_i B_i = \Omega
$$

$$
B_i \cap B_j = \emptyset \text{ if } i \neq j
$$

• The law of total probability:

$$
P(A) = \sum_i P(A|B_i)P(B_i)
$$

• Example: $Ω = {students}$, $M = {male}$, $F = {female}$. Check it is a partition! Let $J = \{$ student: wears jacket $\}$, then

$$
P(J) = P(J|M)P(M) + P(J|F)P(F)
$$

Review for Sec 2.4: The law of total probability and the Bayes theorem

• Bayes theorem: $P(A), P(B) > 0$,

$$
P(B|A) = \frac{P(A|B)P(B)}{P(A)}
$$

Proof:

$$
P(A \cap B) = P(A)P(B|A) = P(A|B)P(B)
$$

• Corollary: ${B_i}$ as a partition of $Ω$, $∀A$,

$$
P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_j P(A|B_j)P(B_j)}
$$

Review for Sec 2.4: The law of total probability and the Bayes theorem

• Example:
$$
P(L) = 0.2
$$
, $P(F|L) = 0.8$, $P(F|L^c) = 0.15$.

• By Corollary 2.18,
\n
$$
P(L|F) = \frac{P(F|L)P(L)}{P(F|L)P(L) + P(F|L^c)P(L^c)}
$$
\n
$$
= \frac{P(F|L)P(L)}{P(F|L)P(L) + P(F|L^c)(1 - P(L))}
$$
\n
$$
= \frac{(0.8)(0.2)}{(0.8)(0.2) + (0.15)(1 - 0.2)}
$$
\n
$$
= \frac{4}{7}
$$
\n• Also we have $P(L^c|F) = 1 - P(L|F) = \frac{3}{7}$.

 QQ

 $D(I) = 0.2$

 \leftarrow \Box

 \bullet Two events and are independent if $P(A \cap B) = P(A)P(B)$.

$$
P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)
$$

- \bullet Three events A, B, C are mutual independent if they are
	- **1** pairwise independent
	- $P(A \cap B \cap C) = P(A)P(B)P(C)$

- A random variable X is a function of ω . $X : \Omega \to \mathbb{R}$
- \bullet A random variable X is called discrete if the set of all values taken by X is discrete.
- \bullet X is characterized by a pmf that gives the probability of occurrence of each possible value of $X(\omega)$. pmf $\{p_i\}$ satisfies: $p_i \leq 0$, $\sum_i p_i = 1$.
- Binomial distribution: $p_i = {n \choose i}$ $\int_{i}^{n} p^{i} (1-p)^{n-i}.$
- Poisson distribution: $\lambda \geq 0$, $p_k = \frac{e^{-\lambda} \lambda^k}{k!}$ $\frac{\sum x_i}{k!}$ if $k \geq 0$ and $p_k = 0$ otherwise.

つへへ

Review for Sec 3.2: Cumulative distribution function

- The CDF of a random variable X is defined by $F_X(x) = P(X \le x) = P(-\infty \le X \le x)$
- It gives weight of the left part of the wire up to and including point x .
- \bullet $F_X(x)$ is non-decreasing and right-continuous
- For any interval $(a, b]$, $P(X \in (a, b]) = F(b) F(a)$

• $\mathcal{E}(\lambda)$: exponential distribution with parameter λ , where $\lambda \geq 0$

Yanxiao Liu [IERG 2470 Tutorial for Midterm Review](#page-0-0) 23 March 2022 19/28

• We want $f(x)$ (not necessarily unique) to satisfy

$$
F(x) = \int_{-\infty}^{x} f(u) du
$$

- Thus let $f(x) = F'(x)$
- For a random variable X with a pdf, we have $P(X = x) = 0$, $\forall x$.

- Consider a random variable X, let $Y = g(X)$, Y is also a random variable.
- Linear transformation: let $g(x) = ax + b$, $Y = g(X)$, $a > 0$, we find

$$
F_Y(y) = F_X(\frac{y-b}{a})
$$

$$
f_Y(y) = \frac{1}{a}f_X(\frac{y-b}{a})
$$

つへへ

Review for Sec 3.5: Expectation

• If X is discrete, expectation of X is

$$
E[X] = \sum_{x \in \mathcal{X}} x p(x)
$$

If X is continuous, expectation of X is

$$
E[X] = \int_{-\infty}^{\infty} x f(x) dx
$$

 \bullet $E(X)$ is the value taken by X on the average, also called mean. **•** Binomial distribution:

$$
E[X] = \sum_{k=0}^{n} k {n \choose k} p^{k} (1-p)^{n-k} = np
$$

Exponential distribution:

$$
E[X] = \int_0^\infty x \cdot \lambda e^{-\lambda x} dx = \frac{1}{\lambda}
$$

• The expectation of a function g of a random variable X , if X is discrete:

$$
Eg(X) = \sum_{x \in \mathcal{X}} g(x)p(x)
$$

If X is continuous:

$$
Eg(X) = \int_{-\infty}^{\infty} g(x)f(x)dx
$$

- *n*-th moment: $m_n = E[X^n]$
- *n*-th central moment: $\mu_n = E[(X EX)^n]$.
- \bullet m_1 is mean or expectation
- μ_2 is called the variance: $\mathsf{Var}(X) = E[(X EX)^2] = E[X^2] [EX]^2$
- The Gaussian distribution $\mathcal{G}(m, \sigma^2)$ is

$$
f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-m)^2}{2\sigma^2}}
$$

has mean m and variance σ^2

つへへ

Review for Sec 3.7: Jensen's inequality

 \bullet a continuous random variable X :

$$
Eg(X) = \int g(x)f(x)dx
$$

For linear combination $y = \sum_i \alpha_i x_i$, it is called a convex combination of $\{x_i\}$ if \bullet $\alpha_i > 0$, $\forall i$ $\sum_i \alpha_i = 1$

A set S s convex if $\forall x, y \in S$,

$$
(\alpha x+(1-\alpha)y)\in S,
$$

for any $0 \leq \alpha \leq 1$.

Review for Sec 3.7: Jensen's inequality

A function g defined on a convex set S is convex if $\forall x, y \in S$, $\forall \alpha \in [0,1],$

 $g(\alpha x_1 + \overline{\alpha} x_2) \leq \alpha g(x_1) + \overline{\alpha} g(x_2)$

Review for Sec 3.7: Jensen's inequality

A function g defined on a convex set S is convex if $\forall x, y \in S$, $\forall \alpha \in [0,1],$

$$
g(\alpha x + (1 - \alpha)y) \leq \alpha g(x) + (1 - \alpha)y
$$

 \bullet Jensen's inequality: let g convex, then

$$
E[g(X)] \geq g(EX)
$$

Thank you and good luck to your midterm!