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Note

• I will review lectures 1-7 today.
• I will focus on the big picture and some important practices and proofs.

The goal of this review is to let you know which part you are not familiar
with.
Details are in the lecture slides.

• Important: The course is for you to learn something, we are from different
background, it is not a competition!
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Lecture 1 Review: Definitions

Self-information

• Self-information: ιX (x) = log 1
pX (x)

• Joint pmf pX ,Y : ιX ,Y (x , y) = log 1
pX,Y (x,y)

1 ιX (x) ≥ 0
2 For a function f , ιf (X)(f (x)) ≤ ιX (x), equality iff f is injective.
3 (Additive) If X ,Y are independent, ιX ,Y (x , y) = ιX (x) + ιY (y).
4 ιX (x) is constant iff X follows a uniform distribution
5 Weakness: information spectrum is a probability distribution, but we want a

single number to summarize the amount of information.
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Lecture 1 Review

Entropy

• Shannon entropy: H(X ) = E[ιX (X )] =
∑

x pX (x) log 1
pX (x) , which is the

average of the self-information.
• Joint entropy: H(X ,Y ) = E[ιX ,Y (X ,Y )]

1 Positivity: H(X) ≥ 0 with equality iff X is a constant.
2 Uniform distribution maximizes entropy: For |X | < ∞, H(X) ≤ log |X |.
3 Invariance under relabeling: H(X) = H(f (X)) for any bijective f .
4 Conditioning reduces entropy: H(X |Y ) ≤ H(X) with equality iff X ,Y indpt.
5 Full chain rule: H(X1, . . . ,Xn) =

∑n
i=1 H(Xi |X i−1) ≤

∑n
i=1 H(Xi ).

6 H(X) is concave in pX .
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Lecture 1 Review

Convexity
• f : S 7→ R is convex if f (αx + ᾱy) ≤ αf (x) + ᾱf (y) for α ∈ [0, 1].
• Jensen’s inequality: is f is convex, then for X ∈ Rn, f (E[X ]) ≤ E[f (X )].

1 If f strictly convex, then f (E[X ]) = E[f (X)] iff X is constant.

Log sum ineq

For a1, . . . , an, b1, . . . , bn ≥ 0, a =
∑

i ai , b =
∑

i bi ,∑
i

ai log
ai

bi
≥ a log

a
b
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Lecture 2 Review

Overview
• Venn diagrams: Combinatorics VS information theory
• Conditional entropy
• Concavity of entropy
• Conditional Mutual Information
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Lecture 2 Review

Lecture 2 Review
• Venn diagrams

1 Shannon-type inequality: inequality implied by I(X ;Y |Z ) ≥ 0
2 I(X ;Y ;Z ) might be negative!

• Intuitively, information is similar to set.
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Lecture 2 Review
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Lecture 2 Review
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Lecture 2 Review

Lecture 2 Review
• Conditional entropy of Y given X :

H(Y |X ) =
∑

x

PX (x)H(Y |X = x)

= E
[
log

1
pY |X (Y |X )

]
=

∑
x,y

pX ,Y (x , y) log
1

pY |X (y |x)

1 Average amount of new info in Y if we already know X .

• Conditional entropy vs set difference:

H(Y |X ) = H(X ,Y )− H(X )

• Concavity of entropy
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Lecture 2 Review

Lecture 2 Review

• Mutual information: I(X ;Y ) = E
[
log

pX,Y (X ,Y )

pX (X)pY (Y )

]
.

1 Measures how much information do X ,Y share
2 I(X ;Y ) ≥ 0
3 I(X ;Y ) ≤ min{H(X),H(Y )}
4 I(X ;Y ) = H(Y ) iff Y is a function of X , by I(X ;Y ) = H(Y )− H(Y |X).

• I(X ;Y ) is convex in pY |X and concave in pX
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Lecture 2 Review

Lecture 2 Review
• Conditional mutual information:

I(X ;Y |Z ) = H(X |Z ) + H(Y |Z )− H(X ,Y |Z )

= H(Y |Z )− H(Y |X ,Z )

=
∑

z

pZ (z)I(X ;Y |Z = z)

= E
[
log

pX ,Y |Z (X ,Y |Z )

pX |Z (X |Z )pY |Z (Y |Z )

]
I(X ;Y |Z ) ≥ 0 with equality iff X ⊥⊥ Y |Z .

1 Condition may increase/decrease mutual information

I(X ;Y |Z ) = H(X |Z ) + H(Y |Z )− H(X ,Y |Z ) = H(Y |Z )− H(Y |X ,Z )

• Information diagram for 4 and 5 RVs
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Lecture 2 Review

Lecture 2 Review
• Chain rule: H(X ,Y ,Z ) = H(X ) + H(Y |X ) + H(Z |X ,Y )

• Generally,

H(X1, . . . ,Xn) =
n∑

i=1

H(Xi |X1, . . . ,Xi−1)

• For mutual information,

I(X1, . . . ,Xn;Y ) =
n∑

i=1

I(Xi ;Y |X1, . . . ,Xi−1)
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Lecture 2 Review

Markov chain

P(Xi+1 = xi+1|X1 = x1, . . . ,Xi = xi) = P(Xi+1 = xi+1|Xi = xi)

• Data processing inequality: If X → Y → Z → W , then I(X ;W ) ≤ I(Y ;Z ).

Yanxiao Liu ENGG5301 Information Theory 13



Lecture 2 Review

Lecture 2 Review

• Kullback-Leibler divergence: D(p∥q) =
∑

x p(x) log p(x)
q(x) .

1 D(p∥q) ≥ 0 with equality iff p = q.
2 I(X ;Y ) = D(pX ,Y ∥pX (x)pY (y)): Mutual information is the divergence

between the true joint distribution and the hypothetical joint distribution if X ,Y
were independent.

3 It is not a distance measure! (not symmetric)

• Total variation distance: δTV (p, q) = supA⊆X |p(A)− q(A)|.a.

• Pinsker’s inequality: δTV (p, q) ≤
√

1
2 log e D(p∥q).

aRudin, Walter. Principles of mathematical analysis. Vol. 3. New York: McGraw-hill, 1976.
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Lecture 3: Lossless Compression

Lecture 3 Review
• If X is uniformly distributed, you need n ≈ H(X ) = log2 k bits to compress

X .
• You can do better if you allow n to change according to value of X :

Variable-length compression
• You should be able to uniquely decode: let the decoder know the

boundaries of the codewords m = f (X1)∥ · · · ∥f (Xn)

• Prefix-free code: can be represented as a binary tree

Kraft’s inequality

There exists a prefix-free code with L(f (x)) = ℓx for x ∈ X if and only if∑
x∈X 2−ℓx ≤ 1
• Expected length: E[L(f (x))] = E[ℓx ] =

∑
x pX (x)ℓx

• Expected length must be at least H(X )(proved in lec3)
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Lecture 3: Lossless Compression

Huffman coding
• An algorithm for finding the optimal prefix-free code
• Optimality: attains the smallest possible E[ℓX ](proved in lec3)
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Lecture 3: Lossless Compression

Fano’s inequality

X , X̂ are r.v. over X , Pe = P(X ̸= X̂ ), then

H(X |X̂ ) ≤ Hb(Pe) + Pe log(|X | − 1) ≤ 1 + Pe log |X |

where Hb(a) = H(Bern(a)) ) is the binary entropy function.
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Lecture 3: Lossless Compression

Compree X1, . . . ,Xn i.i.d. following pX into fixed length codeword M = {1, . . . , ⌊2nR⌋}
with error probability ϵn.

Shannon’s source coding theorem

If R > H(X ), then there is a code with ϵn → 0. If R < H(X ), then there does
not exist code with ϵn → 0.
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Lecture 3: Lossless Compression

Compree X1, . . . ,Xn i.i.d. following pX into fixed length codeword M = {1, . . . , ⌊2nR⌋}
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Shannon’s source coding theorem
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Concluding Remarks

• Def of (joint) entropy, properties
• Venn diagrams
• Conditional entropy
• (Conditional) Mutual Information
• Karnaugh map
• Total variation distance
• Variable-length compression: uniquely decodability, Prefix-free code,

Kraft’s inequality, Optimality
• Fano’s inequality
• Shannon’s source coding theorem
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Review of Lecture 4

• Strong typical sequences
• For xn = (x1, . . . , xn), N(a; xn) = |{i : xi = a}|
• δ-strongly typical set T n

δ (X ) w.r.t. pX includes xn s.t.:
1 N(a; xn) = 0 for a not in supp(pX )

2
∑

a

∣∣∣ 1
n N(a; xn)− pX (a)

∣∣∣ ≤ δ

• Eg:
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Review of Lecture 4

Asymptotic equipartition property

There exists η = η(pX , δ) with η(pX , δ) → 0 as δ → 0 s.t. ∀xn ∈ T n
δ (X ),

2−n(H(X)+η) ≤ pn
X (x

n) ≤ 2−n(H(X)−η) (1)

• All typical sequences have similar probabilities

Cor

|T n
δ (X )| ≤ 2n(H(X)+η) (2)
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Review of Lecture 4

Most sequences are typical

For δ > 0 and i.i.d. X1, . . . .Xn ∼ pX ,

lim
n→∞

P(X n ∈ T n
δ (X )=1 (3)

• Each xn ∈ T n
δ (X ) has probability approximately 2−nH(X).

• A random sequence is probably typical.
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Review of Lecture 4

Shannon’s source coding theorem

Compress X1, . . . ,Xn i.i.d. following pX into codeword M = {1, . . . , ⌊2nR⌋} with
error prob ϵn.
If R > H(X ), there is a code with ϵn → 0.

• Proof: using typical set.
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Review of Lecture 4

Jointly typical sequence

T n
δ (X ,Y ) =

{((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n : p̂xn,yn << pX ,Y , δTV (p̂xn,yn , pX ,Y ) ≤ δ/2}

where p̂xn,yn (a, b) = 1
n |{i : (xi , yi) = (a, b)}|

• Each (xn, yn) ∈ T n
δ (X ,Y ) has prob approximately 2−nH(X ,Y )

• lim
n→∞

P((X n,Y n) ∈ T n
δ (X ,Y ) = 1

• |T n
δ (X ,Y )| ≈ 2−nH(X ,Y )

• Preservation: Y = f (X ), xn ∈ T n
δ (X ) ⇒ yn ∈ T n

δ (Y ) s.t. yi = f (xi)

• Consistency: (xn, yn) ∈ T n
δ (X ,Y ) ⇒ xn ∈ T n

δ (X ), yn ∈ T n
δ (Y )
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Review of Lecture 4
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Review of Lecture 5

• Channel: A channel is a conditional distribution pY |X : with input X , you
have an output Y .

• Memoryless channel: The channel is memoryless, the different channel
uses are independent of each other

• Discrete memoryless channel:
1 Binary symmetric channel (BSC)
2 Binary erasure channel (BEC)
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Review of Lecture 5

• Similar def of Encoder, Decoder, Block error probability
• Rate of the code (the number of message bits sent per channel use) is

k/n.
1 Repetition code: Rate 1/t .
2 Hamming (7,4) code for BSC:

p1 = m1 ⊕ m2 ⊕ m4

p2 = m1 ⊕ m3 ⊕ m4

p3 = m2 ⊕ m3 ⊕ m4
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Review of Lecture 5

Linear Codes

Encode m ∈ Fk
2 into f (m) = mG s.t. G is called the generator matrix.
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Review of Lecture 5

Asymptotic channel coding
• Send message of ≈ nR bits using n channel uses
• R is achievable if there is a sequence of codes fn, gn s.t. ϵn → 0 as n → ∞.
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Review of Lecture 5

Channel coding theorem

The information capacity of a discrete memoryless hannel pY |X is

C = maxpX I(X ;Y )

s.t. pX ,Y (x , y) = pX (x)pY |X (y |x)
• Achievability
• Converse
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Review of Lecture 6

Achievability: Random coding
• If we construct the code randomly, then it is good with high probability
• Random codebook: Generate f (1), . . . , f (⌊2nR⌋)) i.i.d. following pn

X .
• Joint typicality decoder: For yn ∈ Yn, if there is a unique m s.t.

(f (m), yn) ∈ T n
δ (X ,Y ), take g(yn) = m; o.w. set g(yn) to be an arbitrary

value.
• Assume m = 1 is sent, error event:

1 E1: (f (1), yn) /∈ T n
δ (X ,Y )

2 E2: There is a wrong m ̸= 1 with (f (1), yn) ∈ T n
δ (X ,Y )
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Review of Lecture 6
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Review of Lecture 6

Avg error prob. vs Max error prob
• If Mn follows another distribution, the error prob. may no longer be small!

ϵ̄n = maxn P(M̂n ̸= m|Mn = m)

• Given a sequence of codes with ϵn → 0, convert it to a sequence of codes
with ϵ̄n → 0.

• Use Markov’s inequality and show P(M̂n ̸= m|Mn = m) < 2ϵn.
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Review of Lecture 6

Converse

If there is a sequence of codes with ϵn → 0, then R ≤ C = maxpX I(X ;Y )

Proof

1 Lemma: I(X n;Y n) ≤
∑n

i=1 I(Xi ;Yi)

2 Fano’s inequality: H(M|M̂) ≤ 1 + ϵn log⌊2nR⌋

log⌈2nR⌉ = H(M) = I(M; M̂) + H(M|M̂)

≤ I(X n;Y n) + o(n)

≤
n∑

i=1

I(Xi ;Yi) + o(n)

≤ nC + o(n)

3 Take n → ∞

• There are alternative proofs.
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Review of Lecture 6

Channel with feedback

The (operational) capacity of DMC with perfect feedback is the same as the
capacity without feedback

• Note pY n|Xn (yn|xn) =
∏n

i=1 pY |X (yi |xi) may fail for memoryless channels
with feedback
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Review of Lecture 6

Converse

• (M,Y i−1 → Xi → Yi) forms a Markov chain
• Fano’s ineq H(M|M̂) = o(n)

log⌈2nR⌉ = H(M) = I(M; M̂) + H(M|M̂)

≤ I(M;Yi) + o(n)

=
n∑

i=1

I(M;Yi |Y i−1) + o(n)

≤
n∑

i=1

I(M,Y i−1;Yi) + o(n)

≤
n∑

i=1

I(Xi ;Yi) + o(n)

≤ nC + o(n)

• Take n → ∞
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Review of Lecture 6

Joint source-channel coding

The supremum of achievable R is C/H(U) where C is the capacity of pY |X .
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Review of Lecture 7

Lossy Compression

Compress X ∈ X into M = f (X ) and decompress X̂ = g(M).
Instead of lossless compression, lossy compression only requires X̂ to be
close to X

Distortion measure

Suppose X̂ is the reconstruction alphabet, a distortion measure is a function
d : X × X̂ → [0,∞):

1 d(x , x̂) measures the distance between x and x̂ .

2 It is not required that d(x , x̂) = 0 or d(x , x̂) = d(x̂ , x)

3 Eg: d(x , x̂) = log 1
x̂(x)
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Review of Lecture 7

One-shot lossy compression

• Compress X ∼ pX into M and decompress X̂ = g(M) ∈ X̂ .
• Minimize the expected distortion subject to:

1 Cardinality constraint: M ∈ {1, . . . , k}

min
pX̂|X :H0(X̂)≤log k

E[d(X , X̂)]

2 Entropy constraint: H(M) ≤ R

min
pX̂|X :H0(X̂)≤R

E[d(X , X̂)]
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Review of Lecture 7

Asymptotic lossy compression

Compress X1, . . . ,Xn ∼ pX into M = fn(X n) ∈ {1, . . . , ⌈2nR⌉} and decompress
into X̂ n = gn(M) ∈ X̂ n.

• Average distortion d(xn, x̂n) = 1
n

∑n
i=1 d(xi , x̂i)

• rate-distortion pair (R,D) is achievable if there is a sequence of codes
fn, gn s.t.

lim
n→∞

E
[
d(X n, gn(fn(X n)))

]
≤ D

• The rate-distortion region is the closure of the set of achievable
rate-distortion pairs

• The (operational) rate-distortion function R(D) is the infimum of rates R
s.t. (R,D) is in rate-distortion region.
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Review of Lecture 7

• R(D) = 0 if D ≥ Dmax = minx̂ E[d(X , x̂)]
• R(D) ≤ H(X ) if D ≥ Dmin = E[minx̂ d(X , x̂)]
• The rate-distortion region is convex
•
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Review of Lecture 7

Shannon’s lossy source coding theorem
• The information rate-distortion function is

RI(D) = min
pX̂|X :E[d(X ,X̂)]≤D

I(X ; X̂ )

• Theorem: R(D) = RI(D) for D ≥ Dmin

1 Achievability: ∀ϵ > 0, and pX̂ |X with E[d(X , X̂)] ≤ D and R > I(X ; X̂) + ϵ, we
can construct a scheme with

lim
n

E[d(X n, X̂ n)] ≤ D + ϵ (4)

2 Converse: Any scheme with lim
n

E[d(X n, X̂ n)] ≤ D satisfies R ≥ RI(D)

• Better than one-shot scheme since I(X ; X̂ ) ≤ H(X̂ )
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Review of Lecture 7

Computing R(D)

• R(D) = min
pX̂|X :E[d(X ,X̂)]≤D

I(X ; X̂ )

• Since I(X ; X̂ ) is convex in pX̂ |X for fixed pX and E[d(X , X̂ )] is an affine
function of pX̂ |X , this is a convex optimization problem

Example

• X ∼Bern( 1
2 ) and Hamming distance d(x , x̂) = 1{x ̸= x̂}

• Assume E[d(X , X̂ )] = P(X ̸= X̂ ) = ϵ ≤ D
• Fano’s ineq
• I(X ; X̂ ) = H(X )− H(X |X̂ ) ≥ 1 − Hb(ϵ)

• If D ≤ 1/2, we have I(X ; X̂ ) ≥ 1 − Hb(D) attained when pX̂ |X is BSC(D).

• If D > 1/2, this distortion is attained by any X̂ indpt of X
• Hence R(D) = 1 − Hb(D) if D ≤ 1/2, R(D) = 0 if D > 1/2.
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Review of Lecture 8

Lecture 8
• Conditionally typical sequence
• Conditional typicality lemma
• Covering lemma
• Lossy source coding

1 Achievability
2 Converse
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Concluding Remarks

Why we study information theory?
• It provides theoretic guarantees of many practical problems.

1 Beyond the digital communication, information theory finds its way to biology,
computation and complexity, and machine learning.

• It is beautiful: intersection of math, engineering and science.
• Information Theory is the art of telling you how much can you possibly do.
• We are asking how information can be reinforced in a complex setting,

ultimately giving us principles for better technology and greater
understanding.

Remarks
• Review all the homeworks carefully!
• No cheating, and good luck!
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