
S TA R K D R A P E R

C O U R S E N O T E S :

O P T I M I Z AT I O N T H E O R Y
A N D A L G O R I T H M S

C O U R S E N O T E S : V E R S I O N 1 . 1 1

Copyright © 2019 Stark Draper

December 2019

Contents

1 Introduction 5

2 Vectors and functions 9

3 Matrices and eigen decomposition 35

4 Symmetric matrices and spectral decomposition 45

5 Singular value decomposition 53

6 Linear equations and least squares 59

7 Linear, quadratic, and quadratically-constrained quadratic programs 71

8 Convex sets and functions 97

9 Convex optimization 117

10 Duality 131

Bibliography 153

4

Remarks, feedback, and versions

These notes are in development in fall term 2019. These notes are
meant to complement, and not replace, the course text. They indicate
to the reader our specific trajectory through the text and the empha-
sis of material in our course. The majority of thanks for this teaching
resource are due to Zhipeng Huang and Yanxiao Liu who built up
these notes from scratch. Thank you Zhipeng and Yanxiao! As we
progress through the semester updated versions with additional
chapters and edits will be distributed. The main differences between
distributions are noted below. Corrections of typos and errors, and
other suggestions are welcome and appreciated. Please email any
such comments to eceCourseProfDraper@gmail.com. Please include
the course number, and the notes version number, in the subject line
of your message, as course notes for distinct courses are in parallel
development.

Version 1.01: Initial distribution of chapters 1 and 2.
Version 1.02: Initial distribution of chapters 3 and 4.
Version 1.03: Initial distribution of chapter 5.
Version 1.04: Initial distribution of chapter 6.
Version 1.05: Initial distribution of chapter 7, including linear programs.
Version 1.06: Distribution of remainder of chapter 7, including quadratic programs

and quadratically-constrained quadratic programs.
Version 1.07: Initial distribution of rough notes for chapter 8; to be revised.
Version 1.08: Revision of chapter 8; initial bit of chapter 9 included.
Version 1.09: Revision of chapter 9; initial bit of chapter 10 included.
Version 1.10: Revision of chapter 10.
Version 1.11: Revision of chapter 10, added material on KKT conditions.

1
Introduction

This class will introduce you to the fundamental theory and models
of optimization as well as the geometry that underlies them. The
first portion of the course focuses on geometry: recalling and gener-
alizing linear algebraic concepts you first met in your linear algebra
course. The second portion focuses on optimization. Presentation
of applications is woven throughout. We will draw examples from
diverse areas of the engineering and natural sciences. The material
covered in this course will prove of interest to students from all areas
of engineering, from the computer sciences and, more generally, from
disciplines wherein mathematical structure and the use of numerical
data is of central importance.

The main prior courses that we will be building on are vector
calculus and linear algebra. No prior exposure to optimization is
assumed.

The course text is Optimization Models, by G. Calafiore and L. El
Ghaoui, Cambridge Univ. Press, 2014. These notes are provided as
a supplement to, and not a replacement for, the course text. Many
problem set problems will be drawn from the course text.

Notation

We work mainly with finite-dimensional real-valued vectors in the
course. Lower-case is used for vectors. A length-n real vector x is an
ordered collection of real numbers where the ith coordinate of x is
denoted xi ∈ R. The default will be column vectors so

x =


x1

x2
...

xn

 .

The length n of the vector is also termed the ”dimension” of the
vector, which will subsequently be defined formally. Alternately, the

6 course notes: optimization theory and algorithms

elements of x may be complex, i.e., xi ∈ C, or in some other field,
xi ∈ F. Again, our focus will be in the reals and we compactly denote
the space of x as x ∈ Rn. The transpose of a column vector is a row
vector. The transpose xT of x is

xT = [x1 x2 . . . xn].

We often need to work with a set (or a list) of vectors,

{x(1), x(2), . . . , x(m)}

where x(i) ∈ Rn, i ∈ {1, 2, . . . , m} and (x(i))T = [x(i)1 x(i)2 . . . x(i)n].
The set {1, 2, . . . , m} is the index set of m elements. We often use
the shorthand [m] for the index set; in the above we would have
written i ∈ [m]. We note that the book is not one hundred percent
consistent on this notation. It sometimes reverts to the (simpler)
notation {x1, x2, . . . xm} where xi ∈ Rn and i ∈ [m] for sets of
vectors. This less burdensome notation is used n settings where
sets of vectors are considered, but it is not necessary also to index
individual elements of the vectors.

Uppercase is used for matrices. A matrix A consisting of n rows
and m columns of real numbers is denoted A ∈ Rn×m. The element
in the ith row and jth column of A is denoted [A]ij (alternately aij).
The transpose of A, AT is the matrix the element in the ith row and
jth column of which is [A]ji (alternately aji).

Sets are denoted using calligraphic font. (I will say “script” in class
since “calligraphic” is a mouthful.) For example, the set of vectors
described above might be denoted X = {x(1), x(2), . . . , x(m)}. The
cardinality of the set X is denoted |X |; in the above example |X | =
m. For some special sets we make an exception. In particular to
denote real numbers, complex numbers, and integers we respectively
write R, C, and Z. Occasionally we have need to refer to the sets of
non-negative and positive real numbers, respectively denoted R+

and R++.
Functions map elements of one set to another. As with vectors

we use lowercase letters to denote functions. While we typically use
letters towards the end of the Latin alphabet for vectors (u, v, w, x, y,
z), we typically use letters earlier in the alphabet for functions (f , g,
h), and letters in the middle for indexing (i, j, k, l, m, n).

We write f : X → Y to denote a function f that maps elements of
X to elements of Y . This notation is akin to strongly-typed program-
ming languages. The function f needs an input in X to be able to
process it. Elements not in X are not acceptable as inputs. That said,
not every element of X may be acceptable to f . (E.g., if f calculates
the average age of students in a class, no age inputted into the func-
tion should be negative.) The acceptable subset of X is the domain

introduction 7

of f , denoted dom f . It is often convenient to define f (x) = ∞ for
all x /∈ dom f . In that case dom f = {x ∈ X | | f (x)| < ∞}. In this
course we mostly consider functions of the form f : Rn → Rm. Some
terminology that you might be aware of concerns the relationship
between n and m. If n 6= m then f is a “map”. If n = m then f is
an “operator”. If m = 1 then f is a “functional”. An example of an
f : R→ R where dom f = R+ is plotted in Fig. 1.1.

R

f

Figure 1.1: A function f : R→ R.

2
Vectors and functions

1© Geometry
-Vectors and vector spaces
-Norms
-Inner product

2© Projection
-Onto subspace
-Onto affine sets
-Non-Euclidean

3© Functions
-Functions and sets
-Linear and affine
-Gradients and Taylor approximations

10 course notes: optimization theory and algorithms

Vector: A collection of numbers.

x =


x1

x2
...

xn

 .

where each xi ∈ R or xi ∈ C. The length n of the vector is also
termed as the "dimension" of the vector, which will subsequently be
defined formally.

Our default will be a column vector as we describe above. Trans-
pose x yields a row vector,

xT = [x1 x2 . . . xn].

and occasionally write as a list (x1, x2, · · · , xn). Note that a vector is
not a set of numbers since order matters.

Also, we often need to work with a set(or list) of vectors,

{x(1), x(2), . . . , x(m)}

where x(i) ∈ Rn, i ∈ {1, 2, . . . , m}, i ∈ [m] = {1, 2, · · · , m} and
(x(i))T = [x(i)1 x(i)2 . . . x(i)n].

Note: The textbook is not 100% consistent in its use of this nota-
tion.

Vector Space
First, we define how to add pairs of vectors and how to scale

vectors as follows:
Addition: u = v1 + v2, means ui = v1

i + v2
i for all i ∈ [n].

Scaling: u = av, means ui = v1
i + v2

i for all i ∈ [n].
Linear combination: ∑m

i=1 aiv(i)

v(1) u

v(2)

Figure 2.1: Addition

v(1)

u = 2v(1)

Figure 2.2: Scaling

Vector Space: a set of vectors v that is closed under addition and
scaling, and satisfy following axioms:

(1) Commutativity: u + v = v + u
(2)Associativity: (u + v) + w = u + (v + w)

(3) Distributivity: a(u + v) = au + av, (a + b)u = au + bu
(4) Identity element of addition: ∃0 ∈ V s.t. u + 0 = u
(5) Inverse elements of addition: ∃ − u ∈ V s.t. u + (−u) = 0
(6) Identity element of scalar multiplication: ∃a ∈ R or C s.t.

au = u

In this course our focus is on Rn, i.e., finite-length vectors with
real elements. It is also useful to note that the geometric ideas could
apply to lots of other spaces, such as

vectors and functions 11

1© Finite-length complex vector
we need this especially for discussion of eigenvalues and eigenvec-

tors. But it is also important example in quantum computing.
2© ∞-length complex sequences
3© Complex functions defined on real line
4© Polynomials of degree at most n-1

Pn−1 = {P|p(t) = an−1tn−1 + an−2tn−2 + · · ·+ a1t + a0}

5© Sets of matrices(will discuss later)

Note: Some authors prefer “linear space" rather than "vector
space" since elements of space are not always vectors in the sense of a
list.

Span and subspace
Let S be a set of vectors in a real vector space V, i.e.,S = {v(1), v(2), . . . , v(m)},

where each v(i) ∈ Rn. Then, the span of S, denoted by span(S), is
the set consisting of all the vectors that are linear combinations of
{v(1), v(2), · · · , v(m)}, that is,

span(S) =

{
m

∑
i=1

aiv(i)
∣∣∣∣∣ai ∈ R, ∀i ∈ [m]

}
This set is also called a subspace of V.

Example 1
(0,0)

v(1)

Figure 2.3: Example 1

x

y

z

v(1)

v(2)

Figure 2.4: Example 2

Let S = {v(1)} =
{[

1
1

]}
, then

span(S) = span(v(1))

=

{[
x
y

]∣∣∣∣∣x = y

}

=

{
a

[
1
1

]∣∣∣∣∣a ∈ R

}
Example 2

Let S = {v(1), v(2)} =


 1

1
0

 ,

 1
−1
0


, then

span(S) = {a1v(1), a2v(2)|(a1, a2) ∈ R2}

=


 x

y
0


∣∣∣∣∣∣∣x ∈ R, y ∈ R


= x− y plane

12 course notes: optimization theory and algorithms

Note:
(1) 0 ∈ Rn always included since we can set all coefficients ai = 0

for all i.
(2) Subspace is a "flat" that goes through the origin.

Linear independent set
A set S = {v(1), · · · , v(n)} is a linearly independent set if there

is no element of S can be expressed as a linear combination of the
others.

The set S is linearly independent if the only if ai that satisfies
m

∑
i=1

aiv(i) = 0 is if ai = 0 ∀i ∈ [m]

Importance of linearly independent
For any u ∈ span(S) , there is a unique linear combination to

express u. That is, only one choice of ai in the expression.

v(1)

v(2)

Figure 2.5:

u1

u2

a1v(1)

a2v(2)

Figure 2.6:

For example, any 2-d vector u can be uniquely expressed by the
following two vectors v(1) and v(2), which form the set S.

v(1) =

[
1
0

]
, v(2) =

[
1
1

]
Notice that the two vectors are co-linear so that there is no redun-

dancy in the set S. Now, consider the case there is a redundancy in S,
i.e., there is a vector in S can be expressed by the others in S:

S =

{[
1
0

]
,

[
1
1

]
,

[
0
1

]}
We can prove that we can always shrink S by removing elements

to get a linearly independent set(and also the same subspace before
the deletion). Such an irreducible or linearly independent set can
serve as a basis for span(S).

Any largest linearly independent subset of S = {v(1), · · · , v(m)},
B = {v(1), · · · , v(k)}, k ≤ m is a basis for span(S), and the dimension
of span(S) is denoted as dim(span(S))=k.

Example 1

The following vectors form an linearly independent spanning set
S, and also serve as a basis for the vector space spanned by the set S
(i.e., R3 in this case)

v(1) =

 1
1
1

 , v(2) =

 1
2
0

 , v(3) =

 1
3
1



vectors and functions 13

However, if we redefine v3, says

v(3) =

 3
4
2

 = 2v(1) + v(2)

Then
(

v(1), v(2), v(3)
)

is not a basis(since it is linearly dependent
now), and it need to be reduced to:

span
(
{v(1), v(2)}

)
= span

(
{v(1), v(3)}

)
= span

(
{v(2), v(3)}

)
= span(S)

We can prove that each a basis for span(S) all have same coordi-
nates.

Example 2

The most commonly used basis is the "standard" basis, that is,
each vector of the basis has a unit length:

v(1) =


1
0
0
...

 , v(2) =


0
1
0
...

 , · · · , v(n) =


0
0
...
1


We often use ′e′ for standard basis, i.e., e(i) = v(i).

Norms: The idea of distance on length on a vector space V
A norm ‖ · ‖ is a function such that ‖ · ‖ : V 7→ R and satisfies
(a) ‖v‖ ≥ 0, ∀v ∈ ν, and ‖v‖ = 0 iff v = 0.
(b) ‖u + v‖ ≤ ‖u‖+ ‖v‖, ∀u, v ∈ V .
(c) ‖au‖ = |a|‖u‖, ∀a ∈ R, u ∈ V
Note that ν can be either R or C, if V ∈ C we should have a ∈ C in

(c).

Following is a family of norms that are frequently used:
Lp norm:

‖x‖p = (
n

∑
k=1
|xk|p)1/p, 1 ≤ p ≤ ∞

L2 norm: Euclidean length

‖x‖2 =

√
n

∑
k=1
|xk|2

L1 norm:

‖x‖1 =
n

∑
k=1
|xk|

L∞ norm:
‖x‖∞ = lim

p→∞
‖xk‖p = max

k∈[n]
|xk|

14 course notes: optimization theory and algorithms

Length is a notion of "size". A natural notion of its "size" of a set
is the number of non zero component, i.e., carnality of non-zero
support

card(x) =
n

∑
k=1

1xk 6=0

Sometimes it is called "L0" norm ‖x‖0, since card(x) = limp→0(∑n
k=1 |xk|p)p,

but it is not a norm (so this terminology is inaccurate). For instance,
it doesn’t satisfy property (c) of a norm:

card(2x) = card(x) 6= 2card(x)

Unit norm-ball
To visualize a norm we often plot the unit norm-ball βp =

{x|‖x‖p ≤ 1} in R2. For example,

L2 norm ball

1

1

L1 norm ball : {x||x1| ≤ 1}

1

1

(a) First see inside the box, clearly |x1| ≤ 1 and |x2| ≤ 1
(b) Look at the position we want, x1 + x2 ≤ 1, i.e., x2 ≤ 1− x1

(c) Rest by symmetry

vectors and functions 15

L∞ norm ball: {x|max{|x1|, |x2|} ≤ 1}

1

1

What about card(x)?

1

1

The set {x|card(x) ≤ 1} obviously is not much of a "ball".

To visualize a bit more, we look at the "level sets" of the norm
balls. We define the level set as {x||x| = c}, and let’s see for c =
1
2 , 1, 2. See for the figures on the r.h.s. 1√

2
1
√

2

Figure 2.7: L1 level set

0.5 1 1.5

Figure 2.8: L2 level set

0.5 1 1.5

Figure 2.9: L∞ level set

Why might we be interested in different norms?
Later in the course, we will see applications in optimal control

that we want to meet a control objective while minimizing some
resources(The objective will be to min a norm of the resources).

Inner Products
Any inner product(aka dot/scalar product) on a (real) vector

space Ω maps a pair of elements x, y ∈ Ω into the scalar, that is,
〈·, ·〉 : Ω×Ω 7→ R. For vectors in Rn the inner product of vectors x
and y is given by

〈x, y〉 = xTy =
n

∑
k=1

xkyk

For any x, y, z ∈ Ω and a ∈ R, the following must hold for a inner
product:

(1) 〈x, y〉 ≥ 0 and 〈x, y〉 = 0 iff x = 0 ∈ Ω
(2) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
(3) 〈ax, y〉 = a〈x, y〉
(4) 〈x, y〉 = 〈y, x〉

Note:

16 course notes: optimization theory and algorithms

(a) The above change slightly in complex vector space, e.g.,
〈x, y〉 = 〈y, x〉

(b) The concept we develop apply beyond list vectors in Rn or Cn,
e.g., space of polynomials or of functions, but our focus will be Rn

and Cn.

Let’s connect to angle now.

x
y

~e

x
′

θ

In above picture x, y ∈ Rn but since dimspan(x, y) = 2 (assuming
x and y are not co-linear). The familiar picture in R2 shall holds.

Since we know that | cos θ| < 1, rearranging gives

|〈x, y〉| = |xTy| ≤ ‖x‖2‖y‖2

This is the so called Cauchy-Schwartz inequality, and it relates
inner product(angle) to norms(length). Such inequality holds for
inner product spaces, not just Rn(n-dimensional Euclidean space).
Further more, it could relate the inner product to the norms (not only
L2) via a generalization, says, “Hölder’s inequality”:

|xTy| ≤
n

∑
k=1
|xkyk| ≤ ‖x‖p‖y‖q

for any p, q ≥ 1 such that 1/p + 1/q = 1.
(1) If p = q = 2, we get the Cauchy-Schwartz inequality.
(2) If p = 1, q = ∞, we get |xTy| ≤ ‖x‖1‖y‖∞ = (∑n

k=1 |xk|)(maxk∈[n] xk).

A second important connection of inner product and norm is that

‖x‖2 =
√

xTx = 〈x, x〉

The L2 norm is "induced" by the inner product. In fact, any inner
product induces a norm (by the properties of inner product). How-
ever, there are norms that are not induced by any inner product, e.g.,
L1 and L∞. Inner product space has a more special structure than a
"normed" vector space.

Note: There are also spaces with a sense of length (a "metric").
Those are not vector spaces (it can’t add and scale elements). Those
are "metric" spaces.

vectors and functions 17

vector space

normed vector spaces

inner product spaces

Angles between vectors
By Cauchy-Schwartz |〈x,y〉|

‖x‖‖y‖ ≤ 1, hence we have the following cases
for the angle θ:

xcos e = 1

y

Figure 2.10: (a) cos θ = +1

y

cos e = −1

x

Figure 2.11: (a) cos θ = −1

x

y

Figure 2.12: (b) cos θ = 0

x

y

o

Figure 2.13: (c) cos θ > 0

x

y

o

Figure 2.14: (c) cos θ < 0

(a) If | cos θ| = +1, then θ = 0◦ or 180◦. Vectors x and y are
"co-linear", and |〈x, y〉| = ‖x‖‖y‖

(b) If | cos θ| = 0, then θ = 90◦, and |〈x,y〉|
‖x‖‖y‖ = 0, or equivalently,

〈x, y〉 = 0 (assuming x 6= 0 and y 6= 0). In this case, θ is a "right"
angle, and x, y are orthogonal vectors.

(c) If |θ| < 90◦ ,then cos θ > 0, and 〈x, y〉 > 0, and θ is a "acute
angle", whereas if |θ| > 90◦, then cos θ < 0 and 〈x, y〉 < 0, θ is a
"obtuse angle".

Orthogonality
A set of vectors S = {x(1), x(2), · · · , x(m)} is mutually orthogonal if

〈x(i), x(j)〉 = 0, ∀i 6= j
Such sets have nice property that the elements of S are linearly in-

dependent and so provide a basis for span(S) and hence dim(span(S))=m.
If, in addition, all elements have unit norm, i.e., ‖x(i)‖2 = 1 for all

i ∈ [m] then the set forms an orthogonal basis.
Note that we use ‖ · ‖2 to measure length because it is induced by

the inner product.

Orthogonal complement: Given a subspace S ∈ ν, a vector x ∈ ν is
orthogonal to S if x ⊥ s, ∀s ∈ S, i.e., ⊥ to all vectors in the subspace
S. The orthogonal complement to S is defined as a collection of such
vectors x, namely

S⊥ = {x ∈ ν|x ⊥ s}

Some results of S⊥:
(i) S⊥ is a subspace: clearly it includes 0 ∈ γ and is closed under

linear combination(all linear combination ⊥ S).
(ii) dim(ν)=dim(S) + dim (S⊥).
(iii) Any x ∈ ν can be written in a unique way as x = xs + xs⊥ for

any subspace S.
Note: If S = ν then S⊥ = 0.

Projection

18 course notes: optimization theory and algorithms

Motivation: Given a point x ∈ ν, find the "closest" point in the set
S (recall that points ≡ vectors), this point is called the projection of x
on the set S. Denote this point as y, formally we have

y = Πs(x) = arg min
y∈S
‖y− x‖

Let’s consider different cases for this optimization question:
(1) S is a subspace of an inner product space associate with L2

norm

S

x

Figure 2.15: S is a subspace of an inner
product space

(2) S is an "affine" set(a shifted subspace)

A

x

Figure 2.16: S is an "affine" set

(3) Consider other norms, e.g., L1, L∞ for which no inner prod-
uct(projection in normed vectors space)

Projection onto 1-D subspace
Let’s consider the one dimension subspace given by

S = span({v}) = {λv|λ ∈ R}

The vector x and subspace S are something like:

S

O

v
x

xS

By orthogonal decomposition, x ∈ S ⊕ S⊥, and therefore ∃xs ∈
S, e ∈ S⊥, such that x = xs + e (an unique expression).

Use this decomposition to solve the optimization problem(find the
closest point)

Πs(x) = argy∈S min ‖y− x‖2 = argy∈S min ‖y− x‖2
2

The objective function can be written as

‖y− x‖2
2 = 〈y− x, y− x〉
= 〈(y− xs)− e, (y− xs)− e〉
= ‖y− xs‖2 + ‖z‖2 − 2〈y− xs, e〉
≥ ‖e‖2

2

where the minimum is attained by setting y = xs. Note that the
minimum is unique by uniqueness of orthogonal decomposition and
‖y− xs‖2 = 0 iff y = xs.

To summarize,

xs = Πs(x) = argy∈S min ‖y− x‖2

vectors and functions 19

where xs is in ⊥-decomposition.
To solve for xs (the point we want), we use the condition that

(x− xs) ⊥ S = {λv|λ ∈ R}

Since x ∈ S, ∃a ∈ R such that xs = av, and now we need to solve
for a by

0 = 〈x− av, v〉 = 〈x, v〉 − 〈av, v〉 = 〈x, v〉 − a〈v, v〉

Rearranging yields that a = 〈x,v〉
a〈v,v〉 =

〈x,v〉
‖v‖2 . Thus, xs = av = 〈x,v〉

‖v‖2 v.

Projection onto a general subspace
Observe that all previous steps for 1-D case still hold. Only used S

is 1-D when solving for x(s), so we have already done.
Theorem: Let x ∈ Ω and S ∈ Ω, where x is a vector, S is a

subspace of Ω and Ω is an inner product space. There exists a unique
vector x∗ ∈ S such that

x∗ = argy∈S min ‖x− y‖

A necessary and sufficient condition for x∗ is
(1). x∗ ∈ S
(2). x− x∗ ⊥ S

Now let’s consider how to solve for x∗ in this general case.

Let S = span
(
{x(1), x(2), · · · x(d)}

)
. Notice that x∗ ∈ S can be

written as x∗ = ∑d
i=1 aix(i) for some ai, and (x − x∗) ⊥ S, then if

(x− x∗) ⊥ x(k) ∀k ∈ [d], that will be ⊥ to all linear combination of the
spanning set and hence ⊥ to S.

Accordingly yields d conditions, ∀k ∈ [d], we have

0 = 〈x− x∗, x(k)〉 = 〈x−
d

∑
i=1

aix(i), x(k)〉 = 〈x, x(k)〉 −
d

∑
i=1

ai〈x(i), x(k)〉

Rearranging yields

d

∑
i=1

ai〈x(i), x(k)〉 = 〈x, x(k)〉, ∀k ∈ [d]

Or stacking into a matrix(d equations in d unknowns)
〈x(1), x(1)〉 〈x(1), x(2)〉 · · · 〈x(1), x(d)〉

...
〈x(d), x(1)〉 · · · · · · 〈x(d), x(d)〉




d1
...

dd

 =


〈x(1), x〉

...
〈x(a), x〉


One case where easy to solve the equation is, when the x(k) are

all mutually ⊥ (so the matrix is diagonal), or furthermore, all these

20 course notes: optimization theory and algorithms

vectors have unit length and mutually orthogonal(so it is an identity
matrix).

How do you orthogonalize and normalize a matrix?
Gram-Schmidt Procedure:
Let’s consider an example: we have already have a basis x(1), x(2),

and we want to find the orthogonal basis z(1), z(2).

x(1)

x(2)

Figure 2.17: Problem setting

x(1)

x(2)

uz(1)

Figure 2.18: Step 1

x(1)

x(2)

uz(1)

x(2) − u

z(2)

Figure 2.19: Step 2

Step 1: Normalize x(1)

z(1) =
x(1)

‖x(1)‖

Step 2: Orthogonalize x(2)

(a). Project x(2) onto z(1)

〈x(2), z(1)〉
‖z(1)‖

z(1) = 〈x(2), x(1)〉z(1) = u

(b). Normalize to obtain z(2)

x(2) − u
‖x(2) − u‖

The above procedure could be extended to higher dimensions as
needed.

Stacking up results and yields the QR decomposition

A =


...

... · · ·
...

x(1) x(2) · · · x(m)

...
... · · ·

...

 =


...

... · · ·
...

z(1) z(2) · · · z(m)

...
... · · ·

...




r11 r12 r13 · · ·
0 r22 r23 · · ·
0 0 r33 · · ·
...

. . .


= QR

=


...

... · · ·
r11z(1) r12z(1) + r22z(1) · · ·

...
... · · ·


Note that any non singular square matrix A could be decomposed

in this way.

Project onto affine set
Recall that all subspace must go through origin, and an "affine" set

is a shift/translate of a subspace, and thus it seems that it can’t be too
difficult to project onto this kind of set. An affine set A is defined as

O

S

x

xS

Figure 2.20: Subpace S

O

A

Figure 2.21: Affine set A as a shifted
subspace

A = {x ∈ Ω|x = u + x(0), u ∈ U, x(0) ∈ A}

vectors and functions 21

Note that we can shift S be any point in A.

The idea of finding projection onto affine set:
Step (0) Goal: to project x ∈ Ω onto A.
Step (1) Translate both x and A by −x(0), and note that the transla-

tion of A is S.
Step (2) Project(translate) x − x(0) onto S(as we did before), and

shift result back by +x(0).
Step (3) Get the projection point in A.

A
x(0)

x

Figure 2.22: Step (0)

S = A− x(0)

x− x(0)

x

Figure 2.23: Step (1)

S
x− x(0)

xS

Figure 2.24: Step (2)

S

A

x

x∗ = xS + x(0)

xS

Figure 2.25: Step (3)

Theorem: Projection onto affine set
Let A ∈ Ω be an affine set, where Ω is an inner product space and

A = S + x(c). There is a unique x∗ ∈ A such that

x∗ = argy∈Amin ‖y− x‖

A necessary and sufficient(set of) conditions:
(1). x∗ ∈ A
(2). (x− x∗) ⊥ S

Proof: Any y ∈ A can be expressed as y = z + x(0) when z ∈ S

min
y∈A
‖y− x‖ = min

(z+x(0))∈A
‖z + x(0) − x‖

= min
z∈S
‖z− (x− x(0))‖

Thus z∗ = arg minz∈S ‖z− (x − x(0))‖, and translating back, we
have

x(∗) = z(∗) + x(0)

What are the conditions for optimality? That is,
z(∗) − (x− x(0)) ⊥ S , where z∗ ∈ S is obtained by projection onto

S.
Thus, in terms of optimal x∗,
(1) x(∗) = z(∗) + x(0) ∈ A.
(2) (z(∗) + x(0) − x) ⊥ S⇔ (x(∗) − x) ⊥ S.

Example: Projection onto a hyperplane
A hyperplane is an affine set H specified by the pair (a, b) ∈

Rn ×R.
H = {z ∈ Rn|aTz = b}

An equivalent definition is

H = {z ∈ Rn|z = u + z(0), u ∈ S, z(0) ∈ H}

where S is the subspace S = {z ∈ Rn|aTz = 0}.
Note:
(1) The "equivalent" definition is clearly that of an affine set.

22 course notes: optimization theory and algorithms

(2) a 6= 0 is termed as the "normal" direction.
(3) If b 6= 0, then H = S and so it is a subspace.
A hyperplane is a special type of affine set. The dimension of the

hyperplane is n− 1 given that the subspace S has a dimension of n.
For example,

(1) A (2-D) plane is a hyperplane in R3.
(2) A line is a hyperplane in R3.
(3) A line is not hyperplane in R3.

Exercise: Prove equivalence of above 2 definition
Let’s Start with H = {z ∈ R2|aTz = b}, and let z0 ∈ H(any element

at H will do).
Then, since aTz0 = b and for any z ∈ H, we have

aTz− b = 0⇔ aT − aTz(0) = 0⇔ aT(z− z(0)) = 0

Thus,

H = {z|aT(z− z(0)) = 0} (∗)

Now, since (span{a}) = {x|x = λa, λ ∈ R} is a subspace of dim 1,
the set (span{a})⊥ is a subspace of dim n− 1.

Let S be this subspace.
Observe that by (*), vectors in H when translate by −z(0) on S .
Therefore H is S translated by +z(0) yields z(0).
Now, let’s start with H = {z ∈ Rn|z = u + z(0), u ∈ S , z ∈ H}.
Let {u(1), . . . , u(n−1)} be a basis for u, and we choose a ⊥ u(i),

i ∈ [n − 1] and let b = aTz0. Then for any z ∈ H, we have aTz =

0 + aTz(0) = b.

Example: 2-D case. Let normal direction be a = (1, 1
2), offset b = 2.

H = {z ∈ R2|aTz = b}

= {z ∈ R2|z1 +
1
2

z2 − 2 = 0}

H = {z ∈ Rn|z = u + z(0), u ∈ S , z(0) =

[
2
0

]
}

vectors and functions 23

when

S = {z ∈ R2|aTz = 0}

= {z ∈ R2|z1 +
1
2

z2 = 0}

Note that recall any value at z(0) ∈ H works so alternatively, e.g.,

H = {z ∈ Rn|z = u + z(0), u ∈ S, z(0) =

[
0
4

]
}

or

H = {z ∈ Rn|z = u + z(0), u ∈ S, z(0) =

[
1
2

]
} , etc.

Now let’s back to the first example, projection onto hyperplane.

H = {z ∈ Rn|aTz = b} = {z ∈ Rn|z = xs + z(0), xs ∈ S, z(0) ∈ H}

S

A

p

p∗

Recall that dim(S) = n− 1, so dim(S⊥) = 1, and we want to find
the point p∗ = arg minp∈H ‖p∗ − p‖.

Observe that (p− p∗) ⊥ S (by optimal condition), So (p− p∗) ∈
S⊥ = {λa|λ ∈ R}, and ∃λ∗ such that p− p∗ = λ∗a.

Now, we want to solve for λ∗ but notice that there are 2 unknowns
(λ∗, p∗), and hence we get rid of p∗ dependency by using definition

24 course notes: optimization theory and algorithms

of H.

p− p∗ = λ∗a

⇔ aT(p− p∗) = aT(λ∗a)

⇔ aT p− aT p∗ = λ∗aTa

⇔ aT p− b = λ∗aTa

⇔ λ∗ =
aT p− b

aTa

⇔ λ∗ =
aT p− b
‖a‖2

Thus, p− p∗ = λ∗a = (aT p−b
‖a‖2)a, or p∗ = p− (aT p−b

‖a‖2)a.
and

‖p− p∗‖ = ‖λ∗a‖ = |λ∗|‖a‖ = |a
T p− b|
‖a‖

.
Recall terminology ‖p− p∗‖ = miny∈H ‖y− p‖, we have

p∗ = arg min
y∈H
‖y− p‖

Projection w.r.t other norms
Recall that inner product spaces have a notion of angle, have term

"orthogonality principle", and the L2 norm is one such example. In
contrast, some norms such as L1 andL∞ norms don’t come with a
sense of angle. However the problem still make senses if p 6= 2, e.g.,
p = 1, p = ∞, but we cannot apply ⊥ principle since there is no sense
of angle.

In following we will
(1). Discuss projection in normed vector spaces, particularly L1

and L∞.
(2). Illustrate how the solution differs as you change the norm

(change p).
(3). Give you a sense for character of difference such for p = 1 and

p = ∞.
(4). Get a sense of why might pick p 6= 2.

vectors and functions 25

Recall norm balls we draw before. Let’s project 0 ∈ R2 onto a line
(affine set/hyperplane).

Figure 2.26:

Figure 2.27:

Figure 2.28:

O

A

x∗ = arg min
x∈A
‖x− 0‖p = arg min

x∈A
‖x‖p

Observe that:
x∗2 : Familiar with solution via inner product and ⊥ theorem, and

has a closed form solution.
x∗1 : Solution is "sparse", generally will be the case for affine con-

straints since vertices of norm-ball are axis-aligned.
x∗∞: At optimum, x∗∞,1 = x∗∞,2, equal-magnitude coordinate.

Functions
Some terminologies will be used in this material:
"Function": F : Rn 7→ R

"Map": F : Rn 7→ Rm

However, not all input values may be allowed, input may be a
subset of Ω (cf, Rn), this is the "domain" of F.

Aside: Terminology when discussion a pair of vector space (V ,U)
over a field F

F : U 7→ V , a "map", generally dim(U) 6= dim(V).
F : U 7→ U , an "operator", input and output vectors spaces have

the same dimension.
F : U 7→ F , a "functional", map vector space into a scalar.
In this course, U=Rn, V=Rm, F=R (or, occasionally C).

Sets related to functions

26 course notes: optimization theory and algorithms

Various sets defined by a function tell us a lot(or sometimes every-
thing) about a function F : Rn 7→ R

(1) The "graph" (a.k.a, "plot") of F is the set

F = {(x, F(x)) ∈ Rn+1 : x ∈ Rn}

(2) The "epigraph" of F is the set

F = {(x, t) ∈ Rn+1 : x ∈ Rn, t ≥ F(x)}

Figure 2.29: Graph 1

Figure 2.30: Graph 2

Figure 2.31: Epigraph 1

Figure 2.32: Epigraph 2

Graph

Epigraph

It is also useful to consider points at(or below) a height
(3) The "level" set

cF(t) = {x ∈ Rn : F(x) = t}

(4) The "sub-level" set

LF(t) = {x ∈ Rn : F(x) ≤ t}

Note: graph and epigraph are in Rn+1, level and sublevel set are in
Rn

Let’s sketch these sets for L2 and L1 norms in R2 on the r.h.s.

vectors and functions 27

Figure 2.33: Level set 1

Figure 2.34: Level set 2

Figure 2.35: Sub-level set 1

Figure 2.36: Sub-level set 2

Linear and affine functions
1. A function F : Rn 7→ R is linear iff following two properties are

satisfied
(1) "Homogeneous": F(ax) = aF(x),∀x ∈ Rn and a ∈ R

(2) "Additivity": F(x(1) + x(2)) = F(x(1)) + F(x(2))
Put together to get

F(∑
i∈[d]

aix(i)) = ∑
i∈[d]

aiF(x(i))

2. A function F : Rn 7→ R is affine iff
Let F define pointwise as F = F(x) − F(0), ∀x ∈ Rn is a linear

function. The F : Rn 7→ R is affine iff there is a unique pair (a, b) ∈
Rn ×R such that

F(x) = aTx + b, ∀x ∈ Rn

Since F(0) = b, this implies that any linear function can be ex-
pressed as F(x) = aTx = 〈a, x〉 for some unique a ∈ Rn.

Sets and linear/affine functions
The graph of F : Rn 7→ R is a

- subspace of Rn+1 if F is linear.
- hyperplane of Rn+1 if F is affine.

The epigraph of F : Rn 7→ R is a
- half-space of Rn+1 if F is affine.
- half-space the boarder at which includes 0 ∈ Rn+1 if F is linear.

28 course notes: optimization theory and algorithms

Similar statements hold for level sets and sub-level sets in Rn, e.g.,
level sets of a linear function F : R2 7→ R are affine sets in R2

Definition of a hyperplane:

H = {z ∈ Rn|aTz = b, a ∈ Rn, b ∈ R}

Definition of Half-spaces: are on one side or other of a hyper-
plane(see the r.h.s for a graph of H+),

H+ = {z ∈ Rn|aTz > b}

H− = {z ∈ Rn|aTz ≤ b}

Gradient
The gradient ∇F of F : Rn 7→ R is the vector of partial derivatives

∇F =


∂F(x)

∂x1
∂F(x)

∂x2
...

∂F(x)
∂xn

 , where x =


x1

x2
...

xn


Sometime we need to consider compound function, and thus we

need chain rule for gradients. Says, g : Rn 7→ Rm and F : Rm 7→ R,
both F and g are differentiable and we want ∇Φ(x), where Φ(x) =

F(g(x)). In this case we have

∇φ(x) =



∂φ(x)
∂x1
...
...

∂φ(x)
∂xn

 =



∂g1(x)
∂x1

∂g2(x)
∂x1

· · · ∂gm(x)
∂x1

∂g1(x)
∂x2

. . .
...

...
. . .

...
∂g1(x)

∂xn
· · · · · · ∂gm(x)

∂xn

∇F (g(x))

Example
Let g : R4 7→ R3 and F : R3 7→ R, both F and g are differentiable

and we want to find ∇Φ(x). To simplify, we let the function g and F
takes the form,

vectors and functions 29

g(x) = Ax + b, where A is an 3 by 4 matrix, x is a 4 dimensions
vector, and b is 3 dimensions vector, so function g maps R4 to R3.

F(x) = Cx, where C is an 1 by 3 matrix and the input x is a 3
dimensions vector, so function F maps R3 to R.

Hence, the gradient of Φ(x) is

∇φ(x) =


∂φ(x)

∂x1
∂φ(x)

∂x2
∂φ(x)
∂x13

∂φ(x)
∂x4



=


∂g1(x)

∂x1

∂g2(x)
∂x1

∂g3(x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x2

∂g3(x)
∂x2

∂g1(x)
∂x3

∂g2(x)
∂x3

∂g3(x)
∂x3

∂g1(x)
∂x4

∂g2(x)
∂x4

∂g3(x)
∂x4




∂φ(x)
∂g1

∂φ(x)
∂g2

∂φ(x)
∂g3



=


a11 a21 a31

a12 a22 a32

a13 a23 a33

a14 a24 a34


c11

c12

c13


= ATCT

Affine approximations
Consider the Taylor series for F : Rn → R.

F(x) = F(x0) +∇F(x0)
T(x− x0) + ε(x)

Example 1. F(x) = 2x2
1 + x2

2

F(x) ∼= F(x(0)) +∇F(x(0))T(x− x(0)) ∇F(x)|x (∗)

∇F(x) =

[
4x1

2x2

]

∇F

([
0
0

])
=

[
0
0

]

∇F

([
1
0

])
=

[
4
0

]

∇F

([
0
1

])
=

[
0
2

]
Let’s sketch the "level set" in 2-D,

30 course notes: optimization theory and algorithms

∇F

([
1
0

])
=

[
4
0

]

∇F

([
0
−1

])
=

[
0
−2

]

Let’s visualize the set such that the increment in (∗) is, to first
order, constant. That is, which x ∈ R2 satisfy the relation

{x|∇F(x0)
T(x− x0) = c}

(1) Consider case c = 0
There are points s.t., to approximate (∗), has some level as F(x0)

when c = 0, we have the set {x|∇F(x0)
T(x− x0) = 0}

(2) Consider c = ε > 0, a small positive increment. Then,

{x|∇F(x0)
T(x− x0) = ε}

is points that, to first order, have slightly higher cost (value, level).
Then F(x0), the value at x = x0.

vectors and functions 31

In general the set

{x|∇F(x0)
T(x− x0) = c}

= {x|∇F(x0)
Tx = ∇F(x0)

Tx0 + c}
= {x|aTx = b}

which is a "hyperplane", a type of affine set.

Observe that geometry of gradients connects to geometry of level
sets. But you might think that is a bit funny. You know a Taylor sense
approx is of the function F not the level sets of F. You might also
recall there is a tangent approximation involved somewhere, e.g.

To develop the approximation we need to consider the plot or
"graph" at the function F

graph F = {(x, F(x)|x ∈ Rn)} ⊆ Rn+1

e.g., in above example F(x) = x2 + 1, F : R→ R, s− n = 1 and plot
(graph) is in R2.

32 course notes: optimization theory and algorithms

To find the tangent approximation, we will pick a point t "above".
The graph, is pick some pair (x, t) s.t. t ≥ F(x).

Use Taylor approximation above x0 to approximate F(x)

Recap:
(1) Pick (x, t) s.t. t ≥ F(x)
(2) Assume x and x0 are "close" so approximation is accurate.
(3) By Taylor F(x) = F(x0) +∇F(x0)

T(x− x0) + ε(x)
(4) By (1), t ≥ F(x) = F(x0) +∇F(x0)

T(x− x0) + ε(x)
(5) By (2) will drop the ε(x) term and assume inequality doesn’t

flip (because x and x0 are sufficiently close that ε(x) is sufficient
small), and thus yields

t ≥ F(x0) +∇F(x0)
T(x− x0) (∗)

Next, we re-arrange
(6)

0 ≥ −(t− F(x0)) +∇F(x0)
T(x− x0)

=
[
∇F(x0)

T − 1
] [x− x0

t− F(x0)

]
Observe that:
(a) (x− x0) ∈ Rn so vectors are in Rn+1.
(b) t− F(x0) ∈ R i.e., in example plot when n = 1 in R2.

Now recall connection between angles and inner products.
(1). If inner product of 2 vectors is negative, then the angles is

obtuse.
(2). Matches picture.
What about vectors when this inner product = 0 ? That is

{u ∈ Rn+1|〈u, [∇F(x0),−1]T〉 = 0}

writing u = [x− x0, t− F(x0]
T and no longer require t ≥ F(x).

vectors and functions 33

The condition becomes[
x− x0

t− F(x0)

]T [
∇F(x0)

−1

]
= 0

So we recognize the set defines a hyperplane in Rn+1,

H =

{[
x
t

]∣∣∣∣∣[xT t
] [∇F(x0)

−1

]
=
[

xT
0 F(x0)

] [∇F(x0)

−1

]}

This is called a "supporting hyperplane" of the epigraph.
Finally, let’s look at Taylor approximation one last time (1st order

approximation), and recall the geometric interpretation of each of the
pieces:

F(x) ≈ F(x0) +∇F(x0)
T(x− x0)

= F(x0) + ‖∇F(x0)‖‖x− x0‖
〈
∇F(x0)

‖∇F(x0)‖
,

x− x0

‖x− x0‖

〉
= bias + steepness × distance × angle

3
Matrices and eigen decomposition

3.1 Matrices: array of numbers

Matrices are rectangular arrays of numbers:

A =


a11 a12 ... a1n

a21 a22 ... a2n

...
am1 am2 ... amn

 ∈ Rm×n

The element in the ith row & jth column: aij = [A]ij(equivalent
notation)

The transposition operation works on matrices by exchanging
rows and columns:

AT =


a11 a21 ... a1n

a12 a22 ... am2

...
a1n a2n ... amn

 ∈ Rm×n

So [A]ij = [AT]ji if A ∈ Rm×n then AT ∈ Rn×m

Operations of matrices:
1) A + B = C, where [C] = [A]ij + [B]ij
2) αA = B, where [B]ij = α[A]ij
Note: the origin is a all-zero matrix.

Definition 3.1. Inner product of matrices
Let A, B ∈ Rm×n, the inner product of metrics A and B is defined

as
〈A, B〉 = trace(AT B) = trace(BAT)

where AT B ∈ Rn×n and BT A ∈ Rm×m, and the trace(X) for a given
matrix X is defined as the sum of the diagonal elements of X.

Length of Matrix: Norm
We introduce the Frobenius norm here but note that there are also

other matrix norms(e.g., spectrum norm, nuclear norm)

36 course notes: optimization theory and algorithms

Frobenius Norm:

‖A‖F =
√
< A, A > =

√
trace(AT A) =

√√√√ m

∑
i=1

m

∑
j=1

[A]2ij

Matrix inverse
An n by n matrix A is called "invertible", if ∃ unique A−1 s.t.

AA−1 = A−1 A = I. The matrix A−1 is called the inverse of matrix A

Some properties for invertible matrices:

• (AB)−1 = B−1 A−1, where A, B ∈ Rn×n

• (A−1)T = (AT)−1

• det(A−1) = 1
det(A)

Now, thinking the matrix Am×n as a mapping, i.e., A : Rn 7→ Rm

(or sometimes denotes as F : Rn 7→ Rm, where F is a linear mapping),
the inverse of A might thinking as a inverse of the original mapping,
that is, map Rm back to Rn. The question remains is how to achieve
this.

Notice that:
(1) If m < n , it is impossible to map Rm back to Rn.
(2) If m ≥ n, it is possible to achieve this inverse mapping.
Remark: There is a thing called "pseudo inverse" for non square

matrix.

Matrices as linear & affine maps

A map F : V 7→ W is "linear if for any two points x(1), x(2) ∈ U and
scalar a1 and a2 have

F(a1x(1) + a2x(2)) = a1F(x(1)) + a2F(x(2))

It turns out that any linear map is completely specified by a matrix.
For example, back to basic linear system, Ax = y, the linear mapping
maps x ∈ Rn to y ∈ Rm, via the multiplication of matrix A.

Furthermore, affine maps are linear functions plus the offset, i.e.,
F(x) = Ax + b where A ∈ Rm,n, b ∈ Rm

Approximations

Recall that previously we have talked about approximation of a
function F : Rn 7→ R, and now we are going to consider the case
F : Rn 7→ Rm.

matrices and eigen decomposition 37

A nonlinear map F : Rn → Rm can be approximated by an affine
map(so we are considering a stack of functions now):

F(x) =


F1(x)
F2(x)

...
Fm(x)



=


F1(x0)

F2(x0)
...

Fm(x0)

+


∇F1(x0)

T

∇F2(x0)
T

...
∇Fm(x0)

T

 (x− x0) + o(‖x− x0‖)

=


F1(x0)

F2(x0)
...

Fm(x0)

+


∂F1(x0)

∂x1
· · · ∂F1(x0)

∂xn
...

...
∂Fm(x0)

∂x1
· · · ∂Fm(x0)

∂xn

 (x− x0) + o(‖x− x0‖)

= F(x0) + JF(x0)(x− x0) + o(‖x− x0‖)

where o(‖x− x0‖) are terms that go to zero faster than 1st order for
x → x0 and JF(x0) is the Jacobian of F evaluated at x0:

JF(x0) =


σ f1
σx1

... σ f1
σxn

...
σ fm
σx1

... σ fm
σxn


x=x0

For x ’near’ to x0, the variation δF(x) = F(x) − F(x0) can be
approximated described by a linear map:

δF(x) = JF(x0)δx, δx = x− x0

Orthogonal Matrices

Definition 3.2. U ∈ Rn×m is orthogonal if U = [U(1)...U(n)] and

U(i)T
U(j) =

{
0 ∀i 6= j

1 if i = j

Then UUT = UTU = I
Next, let’s see how orthogonal transformation do to geometry, i.e.,

to length and angles between vectors. Let U be an n by n orthogonal
matrix which defines a linear map from x ∈ Rn to y ∈ Rn, that is,
y = Ux.

(a) Length between vectors

‖y‖2 = (Ux)T(Ux) = xTUTUx = xTx = ‖x‖2

38 course notes: optimization theory and algorithms

(b) Angle between vectors
To compare the angles between vectors, we consider two maps

now, i.e., v = Uw and y = Ux.

〈y, v〉 = 〈Ux, Uw〉 = xTUTUw = xTw = 〈x, w〉

To summarize, the length of a vector and the angle between two
vectors remain the same after an orthogonal transformation.

Range, rank and null space

Let’s consider a linear map that F : x 7→ Ax, where x ∈ Rn and A is
m by n matrix.

Some important terminology regarding this map are illustrated as
follows:

• Domain

dom(A) = Rn, A = [a(1)...a(n)]
dom(AT) = Rm, AT = [a(1)...a(m)]

• Range(or, Column space)

Range of A is the set of vectors y obtained as a linear combination
of vectors x ∈ Rn, and takes the form y = Ax.

R(A) = {y ∈ Rm|y = Ax =
n

∑
i=1

xia(i)}

R(AT) = {w ∈ Rm|w = ATu =
m

∑
i=1

uia(i)}

• Rank

The dimension of the range of A is called the rank of A:

rank(A) = dim{R(A)} = dim{R(AT)} = rank(AT)

• Nullspace (or, Kernel)

The nullspace of the matrix A is the set of vectors in the input
space that are mapped to zero vector:

N(A) = {x ∈ Rn|Ax = 0}

• Fundamental Theorem

We can find that ∀ x ∈ R(AT) and ∀ z ∈ N(A), it holds that
xTz = 0.

Rn = R(AT) ⊕ N(A): ∀x ∈ Rn there is a unique x = xR(AT) =

xN(A).

matrices and eigen decomposition 39

Theorem 3.3. Fundamental theorem of linear algebra
For any given matrix A ∈ Rm×n, it holds that N(A) ⊥ R(AT) and

R(A) ⊥ N(AT), hence

N(A)⊕ R(AT) = Rn

R(A)⊕N(AT) = Rm

dim N(A) + rank(A) = n

dim N(AT) + rank(A) = m

Consequently, we can decompose ∀x ∈ Rn as the sum of 2 vectors
orthogonal to each other, one in the range of AT and the other one is
in the nullspace of A, i.e.,

x = ATξ + z, where z ∈ N(A)

PageRank

PageRank algorithm: More important web page should be ranked
higher.

A page’s important score can be interpreted as the number of
“votes” that a page has received from other pages(or, the sum of
importance score received from all its neighbors), and also a page
can make a vote to other pages as well. Further more, if one page has
made multiple votes to the others, then each vote it made is scaled by
its total vote.

Therefore, the importance score of a page(or node) i can be written
as:

π(i) = ∑
j→i

πj

Oj

where j → i means the set of all the neighbors(denote each neighbor
as j) of i.

Let’s consider following example

Let the score of node 1 be x, and that of node 4 be y. Looking at
node 1’s incoming links, we see that there is only one such link, com-
ing from node 4 that points to three nodes. So x = y

3 and 2x + 2y = 1.
The second equality comes from the normalization of importance
scores, and it turns out node 1 and node 2 has the same importance
score, and also node 3 and 4 have the same one as well. So the set of
importance scores turns out to be [0.125, 0.125, 0.375, 0.375].

40 course notes: optimization theory and algorithms

Let’s define following terminology:
Matrix H: its (i, j)th entry is 1

Oi
if there is a hyperlink from web-

page i to webpage j, and 0 otherwise.
π: N×1 column vector denoting the importance scores of the N

web pages.
Multiply πT on the right by matrix H, this is spreading the im-

portance score from the last iteration evenly among the outgoing
links, and re-calculating the importance score of each webpage in this
iteration by summing up the importance scores from the incoming
links. That is

πT [k] = πT [k− 1]H

When k takes a large number(take a large number of iterations),
we have the limiting distribution π∗T for all the pages,

π∗T = π∗T H

Obviously, π∗T is the left eigenvector of H corresponding to the
eigenvalue of 1.

Let’s take a look in this example. For a graph like this:


x1

x2

x3

x4

 =


0 0 1 1

2
1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0




x1

x2

x3

x4


The importance scores for each page can be computed as follows

x = Ax

Ax− x = 0

(A− I)x = 0

x ∈ N(A− I)

matrices and eigen decomposition 41

x =
1
s1


12
4
9
6


Note:

• x(0) is the initial distribution.

• x(0)i =Pr[start on page i]

• u(i), λi is eigen-vector/value pair if Au(i) = λiu(i), and we arrange
this eigenvalues in a decreasing order from i = 1, that is, λ1 ≥
λ2 ≥ · · · ≥ λn

If Au(i) = λiu(i), A is "diagonalizable" if it has a full set of linear
independent eigenvectors. In this case x(0) = ∑n

i=1 αiu(i)

x(1) = Ax(0) = A[
n

∑
i=1

αiu(1) = ∑
i

αi(Au(i))]

x(2) = A(Ax(0)) =
n

∑
i=1

αi(A2u(i)) =
n

∑
i=1

αi(λ
2
i u(i))

...

x(k) = Akx(0) =
n

∑
i=1

αi(λi)
ku(i)

= α1(λ1)
ku(1) +

n

∑
i=2

αi(λi)
ku(i)

= α1u(1) +
n

∑
i=2

αi(λi)
ku(i)

when k→ ∞

= α1u(1)

Therefore, we have

limk→∞
Akx(0)

‖Akx(0)‖
= u(1)

In conclusion, the limiting distribution(the importance score) for
each page, is specified by an eigenvector(with the largest eigenvalue).

[Further reading] In the terminology of stochastic process, the
matrix H is called the column stochastic matrix (i.e., each column
sum up to one and no entries is negative), and important score for
each page we want to compute π∗ is the stationary distribution (also
equal to the limiting distribution when it is an irreducible Markov

42 course notes: optimization theory and algorithms

chain). The π∗(i) is interpreted as, the proportion of time you stay in
the state i in a long run.

If the matrix A have repeated eigenvalues,

Au(1) = λ1u(1)

Au(2) = λ2u(2)

clearly:
A(α1u(1) + α2u(2)) = α1λ1u(1) + α2λ2u(2)

where α1u(1) + α2u(2) is this linear combination and α1λ1u(1) +

α2λ2u(2) are the maps to a different of same eigenvalues.
1) The "algebraic" multiplicity of an eigenvalue λ of a square

matrix A is # of eigenvalues λi, λ2, ..., λm equal to λ, and we write it
as AM(λ).

2) The geometric multiplicity of an eigenvalue λ of a square matrix
A is the dimension of N(A− λI), and we write it as GM(λ).

In general, 0 < GM(λ) ≤ AM(λ).

If GM(λi) = AM(λi), ∀i, then A is diagonalizable. If A is diago-
nalizable, we can write Au(i) = λiu(i), and now assume all λi distinct
GM(λi) = AM(λi) = 1, ∀i

[
Au(1) Au(2) ... Au(n)

]
=
[
λ1u(1) λ2u(2) ... λiu(i)

]

A
[
u(1) u(2) ... u(n)

]
=
[
u(1) u(2) ... u(n)

] 
λ1 0 ... 0
0 λ2 ... 0
...
0 ... 0 λn


Or equivalently,

AU = UΛ

A = UΛU−1

Λ = U−1 AU

Recall pagerank:

Akx(0) = (UΛU−1)kx(0)

= UΛkU−1x(0)

= U


λk

1 0 ... 0
0 λk

2 ... 0
...
0 ... 0 λk

n

U−1x(0)

It turns out, when a matrix A is diagonalizable, it is easier for us
to compute Ak.

matrices and eigen decomposition 43

Determinant

In previous eigenvalue decomposition, we need to solve for λ from
det(A− λI) = 0 (characteristic function).

The best way to understand determinant net is geometrically as a
scaling factor associated with a linear map. Let’s take a look at the
following example.

Example:

A =

[
a11 a12

a21 a22

]
=
[

a(1) a(2)
]

U = {x ∈ R2|0 ≤ xi ≤ 1, i ∈ [2]}
P = {Ax|x ∈ U}

In this example, the set U is mapped to set P, via a linear map(multiply
by A). We find that

Vol(P) = det(A)Vol(U)

That is, det(A) plays as scaling factor associate with a linear map.
Recall that if det(A) = 0 then A is non-invertible, so if we take

a matrix A with det(A) = 0 then P will be a line with Vol(P) =

0.(Recall that it is impossible to invert the map from a lower dimen-
sion space back to a higher dimension space).

Assume A is diagonalizable(A is similar with a diagonal matrix):

A = UΛU−1

|det(A)| = |det(UΛU−1)|
= |det(U)det(Λ)det(U−1)|

= det(U)det(Λ)
1

det(U)

= |det(Λ)|

= |
n

∏
i=1

λi|

So the determinant of A is zero if there exists an eigenvalue with
zero value, and to summarize, A is not invertible if there is an zero
eigenvalue.

4
Symmetric matrices and spectral decomposition

4.1 Symmetric Matrices

The set of n by n square matrix is defined as

Sn = {A ∈ Rn×n|A = AT}

Following are a few examples of symmetric matrix
Example 1: Hessian matrix: A matrix that each element is the 2nd

order partial derivative of F

[∇2F]ij =
σ

σxi

σ

σxj
F(x)

Example 2: Quadratic Function: q : Rn → R

q(x) =
n

∑
i=1

n

∑
j=1

aijxixj +
n

∑
i=1

cixi + d

= xT Ax + cTx + d

=
1
2

xT(A + AT)x + cTx + d

=
1
2

[
xT 1

] [A + AT C
CT 2d

] [
x
1

]

1) Let F(x) = CTx = ∑n
i=1 cixi:

d
dxk

F(x) =
d

dxk
(

n

∑
i=1

cixi) = ck

∇F(x) =


σF(x)

σx1
...

σF(x)
σxn

 =


c1
...

cn

 = C

46 course notes: optimization theory and algorithms

2) Let

F(x) = xT Ax = ∑
i=1

∑
j=1

aijxixj

= a11x2
1 + a12x1x2 + · · ·+ a21x2x1 + · · ·

d
dxk

F(x) =
d

dxk
(akkx2

k + ∑
l 6=k

xl xk(alk + akl))

= (akk + akk)xk + ∑
l 6=k

xl(alk + akl)

=
n

∑
i=1

(alk + akl)xl

=
n

∑
i=1

([A]kl + [A]lk)xl

Hence,

∇F(x) = (A + AT)x

[∇2F(x)]kj =
d

dxj
(

d
dxk

F(x))

= [A]kj + [A]jk

∇2F(x) = A + AT

Combine (1) and (2), and because q(x) = xT Ax + cTx + d, we take
Taylor approximation of q(x) up to the second order:

q̃(x) = q(0) +∇q(0)Tx +
1
2

xT∇2q(0)x

= d + cTx +
1
2

xT(A + AT)x

Symmetric Matrices and Eigenvectors

Theorem 4.1. 4.18 & 4.2 in textbook
For any matrix in Sn = {A ∈ Rn×n|A = AT}:
1) All eigenvalues are purely real(so eigenvectors can be picked purely

real).
2) GM(λi) = AM(λi): Symmetric matrix is always diagonalizable.
3) Eigenvectors of distinct eigenvalues are ⊥, i.e.,

ξλi = N(A− λi I) ⊥ ξλj = N(A− λj I), where ξλi denotes the
eigenspace w.r.t eigenvalue λi (also, it is the null space of matrix (A− λi I)).

Implication: We can pick the basis for each eigenspace to be an
orthogonal basis(e.g, pick the eigenvectors of this symmetric matrix),
because we have "full set" of eigenvectors(n linearly independent
vectors) and we can always write:

Spectral Decomposition:

symmetric matrices and spectral decomposition 47

A = UΛU−1

= UΛUT

=
[
u(1) u(2) · · · u(n)

] 
λ1 0 0

0
. . . 0

0 0 λn




u(1)T

...
u(n)T


=

n

∑
i=1

λiU(i)U(i)T

We summarize our results now: An n by n matrix A is diagonaliz-
able iff there are n linearly independent eigenvectors(subject to scal-
ing factors). Furthermore, if A is diagonalizable, that is, A = UΛU−1,
where Λ is diagonal matrix with all its entries are the eigenvalues
and U is a collection of all its eigenvectors.

Variational Characterization of eigenvalues of λi where A ∈ Sn

We arrange the eigenvalues in a decreasing order, i.e.,

λmax(A) = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin(A)

We define the "Rayleigh quotient" as xT Ax
xTx for x 6= 0, and we

propose a theorem for this ratio as follows

Theorem 4.2. For A ∈ Sn, we have

λmin(A) ≤ xT Ax
‖x‖2 ≤ λmax(A), ∀x 6= 0

Proof.

xT Ax = xTUΛUTx

= x̄TΛx̄

=
n

∑
i=1

(x̄i)
2λi

≤
n

∑
i=1

(x̄i)
2λmax(A)

= ‖x̄‖2λmax(A)

where x̄ = UTx, and note that ‖x̄‖ = ‖x‖ since U is orthogonal. Use
similar trick we could obtain the lower bound for xT Ax. By a simple
rearrangement we yield the desired result

λ(A)min‖x̄‖2 ≤ xT Ax ≤ ‖x̄‖2λmax(A)

λ(A)min ≤
xT Ax
‖x̄‖2 ≤ λmax(A)

48 course notes: optimization theory and algorithms

Positive (Semi) Definite matrices (PD & PSD)

Definition 4.3. A symmetric matrix A ∈ Sn is PD (or PSD) if xT Ax >

0, ∀x ∈ Rn(or xT Ax ≥ 0).

Alternatively, we denote the set of PSD matrix and the set of PD
matrix as

PSD: Sn
+ = {A ∈ Sn|A � 0}

PD: Sn
++ = {A ∈ Sn|A � 0}

Note: The curled inequality symbol � (and its strict form �) is
used to denote generalized inequality: between vectors, it represents
component-wise inequality; between matrices, it represents matrix
inequality.

Necessary and sufficient conditions:
(1) A symmetric matrix is PSD iff all its eigenvalues ≥ 0, or, all its

principal minors are nonnegative.
(2) A symmetric matrix is PD iff all its eigenvalues > 0, or, all its

leading principal minors are positive (Sylvester’s criterion).

Now we prove the argument for PD:

Proof. First, assume A ∈ Sn is PD, we will show that all λi > 0.

xT Ax = xTUΛUTx = x̄TΛx̄ =
n

∑
i=1

λi(x̄i)
2 > 0

Since A is PD and x 6= 0, and it is always diagonalizable for a sym-
metric matrix.

To show this implies λj ≥ 0, ∀j ∈ [n], we set:

x̄ = ej =



0
0
...
1
0
0
...


where only the jth entry is 1.

0 ≤ U(i)T
UΛUTU(1) = eT

j Λej = λj

And now we assume all eigenvalues are positive, and we want to
show that A is PD:

xT Ax = xTUΛUTx = x̄TΛx̄ =
n

∑
i=1

(x̄i)
2λi ≥ 0

symmetric matrices and spectral decomposition 49

Recall some previous results and note that:
(1) det(A) = ∏n

i=1 λi

(2) det(A) = 0 iff there exist eigenvalue λi = 0:
(3) Combine (1) and (2) and our proof above, we have
→ PD matrices are invertible
→ PSD matrices are invertible only if PD

Ellipses

An ellipse can be defined geometrically as a set or locus of points in
the Euclidean plane. Let’s consider the following set(an ellipse)

ξ = {x ∈ Rn|(x− x(0))TP−1(x− x(0)) ≤ 1}

where matrix P is PD.
Note that the argument above is a quadratic function:

(x− x(0))TP−1(x− x(0)) = xTP−1x− 2x(0)
T

P−1x + x(0)
T

P−1x(0)

= xT Ax + cTx + d

Let’s look at the set ξ, clearly it is centered at x = x(0), and we
further simplify it by defining x̄ = x− x(0)

1 ≥ (x− x(0))TP−1(x− x(0))

= x̄TP−1 x̄

= x̄T(UΛUT)−1 x̄

= x̄T(UT)−1Λ−1U−1 x̄

= x̄TUΛ−1UT x̄

= x̃TΛ−1 x̃

=
n

∑
i=1

(
x̃i√
λi
)2

=
n

∑
i=1

(x̂i)
2

= ‖x̂‖2

Example of where symmetric and PSD matrix are important:
Sample variance & PSD matrices
Dataset x(1), x(2), ..., x(m) all x(i) ∈ Rn

Sample mean: µ = 1
m ∑m

i=1 x(i)

Sample covariance: Σ = 1
m ∑m

i=1(x(i) − µ)(x(i) − µ)T, where (x(i) −
µ)(x(i) − µ)T is the outer-product of centered data points.

Let’s consider an example with m = 3:

50 course notes: optimization theory and algorithms

x(1) =

[
1
2

]
x(2) =

[
4
4

]
x(3) =

[
4
0

]
µ =

[
3
2

]
x̃(1) =

[
−2
0

]
x̃(2) =

[
1
2

]
x̃(3) =

[
1
−2

]
where we take x̃(i) = x(i) − µ, and µ is the sample mean.

So we could compute the covariance matrix by

Σ =
1
3

(
x̃(1) x̃(1)T + x̃(2) x̃(2)T + x̃(3) x̃(3)T

)
=

[
2 0
0 8

3

]
It could be easily verified that the quadratic function (x−µ)TΣ−1(x−

µ) could be visualize as an ellipses with the choice γ = 2, i.e., the set
ξγ = {x|(x− µ)TΣ−1(x− µ) ≤ γ} is an ellipses.

To prove Σ ≥ 0, let’s consider sample variance of the scalar
product for i ∈ [m] with choice ‖w‖ = 1

S(i) = wTx(i) = 〈w, x(i)〉

sample mean:

S̃ =
1
m

m

∑
i=1

s(i) =
1
m

m

∑
i=1

wTx(1) = wTµ

sample variance:

σ2 =
1
m

m

∑
i=1

(s(i) − wTµ)2

=
1
m

m

∑
i=1

(wT(x(i) − µ))2

=
1
m

m

∑
i=1

wT(x(i) − µ)(x(i) − µ)Tw

= wT[
1
m

m

∑
i=1

(x(i) − µ)(x(i) − µ)T]w

= wT ∑ w

Hence it is obviously non negative(so it is PSD) for any choice of w.
The proof is completed.

Square-root matrix and Cholesky decomposition

From previous results(spectral decomposition), any PSD(and cer-
tainly for any PD) matrix can be written as

A = UΛUT

= UΛ
1
2 Λ

1
2 UT

= UΛ
1
2 UTUΛ

1
2 UT

symmetric matrices and spectral decomposition 51

where Λ
1
2 =


√

λ1 · · · · · ·
...

. . .
...

· · · · · ·
√

λn

, and the third equality is obtained

since UTU = I (U is orthogonal and so U−1 = UT).
The A

1
2 = UΛ

1
2 UT → is called the square root matrix of A, and

furthermore, A is PSD(PD) iff there exists a unique A
1
2 is a PSD(PD)

matrix.
Now, let’s see how to obtain the Cholesky decomposition. We

rewrite the matrix decomposition as

A = UΛUT

= UΛ
1
2 Λ

1
2 UT

= UΛ
1
2 UTUΛ

1
2 UT

= βTβ

= (QR)TQR

= RTQTQR

= RTR

where we let β = Λ
1
2 UT, and apply QR decomposition on this

square matrix β(recall that it is unique to any square matrix). Finally,
we express matrix A as a product of triangular matrices, where RT is
lower triangular and R is upper triangular.

5
Singular value decomposition

5.1 The Singular Value Decomposition(SVD)

Let’s review our previous results before starting the SVD part.

Eigen-decomposition

For any A ∈ Rn×n that is diagonalizable, we can express A as

A = UΛU−1

U: n by n invertible matrix of linear independent eigenvectors
∈ Cn, that is, each column of U is an eigenvector of A.

Λ: a diagonal matrix whose diagonal entries are eigenvalues of A,
and λi ∈ C.

Spectral decomposition

For any n by n symmetric matrix A, we can express A as

A = UΛUT

U: Orthogonal matrix (⊥ & normalized) U(i) ∈ Rn;
Λ: Diagonal matrix of λi ∈ R.

Singular Value Decomposition(SVD)

For any matrix A ∈ Rm×n, we can be expressed A as

A = UΣ̃VT

U ∈ Rm×m: An orthogonal matrix, so UUT = UTU = Im

V ∈ Rn×n: An orthogonal matrix, so VVT = VTV = In

Σ̃ =

[
Σ 0
0 0

]
∈ Rm×n

54 course notes: optimization theory and algorithms

where Σ = diag(σ1, ..., σr) > 0, 0 denotes part with all 0.

Comments on SVD:

• Inherits ⊥ matrices of spectral decomposition and all λi are real.

• Generalizes eigen decomposition and spectral decomposition to a
non-square matrix.

• Lose the property of direction invariance of eigen-decomposition.

Example 5.1. Let’s consider an example, y = Ax = UΣ̃VTx, and
see how these matrices impose influences on a vector x(refer to the
figures on the r.h.s)

U =


1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6

 , Σ̃ =

2 0
0 0
0 0

 , V =

[
− 1√

2
1√
2

1√
2

1√
2

]
, A =


− 2√

6
2√
6

− 2√
6

2√
6

− 2√
6

2√
6



1)x =

[
1
0

]

2)w = VTx =

[
− 1√

2
1√
2

]

3)z = Σw =

−
1√
2

0
0


4)y = Uz =


− 2√

6
− 2√

6
− 2√

6


This example and the figures show that the SVD of a matrix A

has lost the property of direction invariance, compared to the eigen-
decomposition.

Computing SVD

The idea of singular value decomposition(SVD) follows from eigen
decomposition of AT A and AAT, since both of these two matrices are
symmetric, so the spectral theorem is applicable(i.e., AT A and AAT

can be orthogonally diagonalized).

singular value decomposition 55

Let A be an m by n matrix. First, we let λi denote eigenvalues of
the symmetric matrix AAT (or of matrix AT A), and arrange these
eigenvalues in a decreasing order, that is, λ1 ≥ λ2 ≥ · · · ≥ λm(there
are n eigenvalues if we consider AT A). We define the singular value
of a matrix A as the square root of the eigenvalues and arrange them
in a decreasing order as well, i.e., σi =

√
λi and suppose we have r

singular values that are positive, so σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
By spectral theorem, we write out U and V as (note that rank(A) =

r):
U =

[
U(1) · U(r) U(r+1) · U(m)

]
=
[
Ur Umr

]
V =

[
V(1) ... V(r) V(r+1) ... V(n)

]
=
[
Vr Vnr

]
Thus,

AAT = UΣ̃VTVΣ̃TUT

=
[
Ur Umr

] [Σ 0
0 0

] [
ΣT 0
0 0

] [
UT

r
UT

mr

]

=
[
Ur Umr

] [Σ2 0
0 0

] [
UT

r
UT

mr

]

=
r

∑
i=1

(σi)
2u(i)u(i)T

=
m

∑
i=1

(σi)
2u(i)u(i)T

where σi = 0 if r + 1 ≤ i ≤ m.
We may notice that the vector u(k) is kth eigenvector of AAT by

showing that

(AAT)u(k) =
m

∑
i=1

σ2
i u(i)(u(i))Tu(k)

=
m

∑
i=1

σ2
i 1i=ku(i)

= σ2
k u(k)

= λku(k)

where λk is the k-th eigenvalue of AAT, and the indicator function
comes from the orthogonality of matrix U .

The same logic can be applied to AT A and shows that v(k) is k-th
eigenvector of AT A.

Accordingly, we have already known how to obtain he SVD of a
matrix.

We summarize the procedure that how we compute the SVD of a
matrix m by n matrix A as follows:

56 course notes: optimization theory and algorithms

1) Singular values: Compute eigenvalues of AAT or AT A, and to
find the r positive singular values σi =

√
λi(AT A), so we have the

matrix Σ̃ with diagonal entries are these positive singular values and
other entries are zero.

2) Right-Singular vectors v(i): Find the eigenvectors of AT A, so we
have an n by n orthogonal matrix V.

3) Left-Singular vectors u(i): Find the eigenvectors of AAT, so we
have an m by m orthogonal matrix U .

4) Write down the expression A = U Σ̃VT.

Bases for Fundamental Subspaces

Let’s consider arbitrary x ∈ Rn,

Ax = UΣ̃VTx

=
[
Ur Umr

] [Σ 0
0 0

] [
VT

r
VT

nr

]
x

=
[
Ur Umr

] [Σ
0

] [
VT

r

]
x

= UrΣVT
r x

= Σr
i=1σiu(i)(v(i))Tx

The above equalities show us that we have lost all components of
x along v(i) directions when r + 1 ≤ i ≤ n, i.e., columns of Vnr. We
summarize the results as follows:

(1) All direction in output are in span {u(1), ..., u(n)}
(2) Columns of Vr provide basis for R(AT)

(3) Columns of Vnr provide basis for N(A).
(4) Columns of Ur provide basis for R(A).
(5) Columns of Umr provide basis for N(AT)

Condition number

Most numerical computations involving an equation Ax = b are as
reliable as possible when the SVD of A is used. The two orthogonal
matrices U and V do not affect lengths of vectors or angles between
vectors. Any possible instabilities in numerical calculations are
identified in Σ. If the singular values of A are extremely large or
small, roundoff errors are almost inevitable, but an error analysis is
aided by knowing the entries in Σ and V.

If A is an invertible n by n matrix, then the ratio σ1
σn

of the largest
and smallest singular values gives the condition number of A (Actu-
ally, a “condition number” of A can be computed in several ways).

singular value decomposition 57

Let’s consider Ax = b when A is invertible. We solve for x and
obtain that x = A−1b. What if b = br + e? how much does solution
change (let’s take b as the true value and e as the round-off error
here) ?

Now, our solution is x̂ = A−1br + A−1e.

‖A−1e‖
‖A−1br‖
‖e‖
‖b‖

=
‖A−1e‖2

‖e‖2

‖b‖2

‖A−1b‖2

max
e,b 6=0

‖A−1e‖
‖e‖

‖b‖
‖A−1b‖ =

[
max
e 6=0

‖A−1e‖
‖e‖

] [
max
b 6=0

‖b‖
‖A−1b‖

]
=

σmax(A−1)

σmin(A−1)

=
1

σn
1
σ1

=
σ1

σn

=
σmax(A)

σmin(A)

= K(A)

where K(A) is defined as the condition number of matrix A.
Note that, by the SVD of A−1 we have

A−1 = (UΣVT)−1

= VΣ−1UT

= V


1
σ1

. . .
1

σn

UT

and by the definition of Rayleigh Quotients we have

σmax(A−1) =
1
σn

σmin(A−1) =
1
σ1

Reduced SVD and Pseudo inverse

When matrix Σ̃ contains a zero row (or column) vector, we may
have a simplified expression compared to the original SVD, namely,

58 course notes: optimization theory and algorithms

reduced SVD:

A = U Σ̃Vr

=
[
Ur Umr

] [Σ 0
0 0

] [
VT

r
VT

nr

]
= UrΣVT

r

Noticed that the diagonal entries of matrix Σ are non-zero, so we may
have the pseudo inverse(i.e., Moore–Penrose inverse) of matrix A,
which is given by

A+ = VrΣ−1UT
r

SVD and matrix norms

Recall the definition of matrix norms (Frobenius norm), it turns out
that there is connection between Frobenius norm and the singular
values:

‖A‖2
F = ∑

i
∑

j
a2

ij

= trace(AT A)

= trace(VΣ̃TUTUΣ̃VT)

= trace(VΣ̃TΣ̃VT)

= trace(VVTΣ̃TΣ̃)

= trace(Σ̃TΣ̃)

= trace(Σ̃2)

=
r

∑
i=1

σ2
i

That is, the Frobenius norm of A equals to the sum of the square
of positive singular values.

6
Linear equations and least squares

6.1 Least Squares

Ax = y (∗)

where A ∈ Rm×n is the coefficient data matrix (known), y ∈ Rm are
constraints(known) and x ∈ Rn are parameters (need to choose).

There are three possibilities:

• a) No x ∈ Rn satisfies (∗)

• b) An unique x ∈ Rn satisfies (∗)

• c) Many x ∈ Rn satisfies (∗)

(a) Existence:
Since Ax ∈ R(A), a solution will exist if y ∈ R(A)

A simple test based on the ranks of augmented matrix and coeffi-
cient matrix:

1) rank(
[

A y
]
) = rank(A): solution to (∗) exists

2) rank(
[

A y
]
) > rank(A): no solution to (∗) exists

If a solution exists, is it unique?
Assume a solution x̄ exists s.t. Ax̄ = y, any there may have other

solution x also satisfy Ax = y.
So

Ax− Ax̄ = A(x− x̄) = 0

x− x̄ ∈ N(A)

Any solution to (∗) can be expressed as:

x = x̄ + (x− x̄) = x̄ + e

where e ∈ N(A)

So if there are many solutions to (∗), we will have a affine sets:

60 course notes: optimization theory and algorithms

A = {x|x = x̄ + N(A), Ax̄ = y}

The solution is unique if the elements of N(A) are all zero. x̄ is any
particular solution for Ax̄ = y

The three cases typically bread down into a question about dimen-
sions of A ∈ Rm×n

• 1) Overdetermined LS: more constraints than parameters m > n.
Typically a solution does not exist.

• 2) Square: Equal # constraints & parameters, typically ∃ a unique
solution.

• 3) Underdetermined LS: Fewer constraints than parameters, m < n,
typically many solutions

1) Overdetermined: m > n
Assume A is full (column) rank, rank(A) = n. A is a tall and thin

matrix. dim(R(A)) = n < m. y ∈ Rm.
We want to find x∗ such that Ax∗ is the ’closest’ to y:

x∗ = arg min
x∈Rn

‖Ax− y‖2

min
x∈Rn

||Ax− y‖2 = min
ŷ∈R(A)

‖ŷ− y‖2 = ∏
R(A)

(y)

From chapter2,

y∗ =
n

∑
i=1

x∗i a(i)

where
A =

[
a(1) · · · a(n)

]
Solve for x∗ via

n

∑
i=1

x∗i 〈a(k), a(i)〉 = 〈a(k), y〉, ∀k ∈ {1, 2, ..., m}

linear equations and least squares 61

Stack up to get
AT Ax∗ = ATy

There are 2 possibilities: (1)AT A is invertible; (2) AT A is not invert-
ible.

1) When AT A is invertible

x∗ = (AT A)−1 ATy

ŷ∗ = A(AT A)−1 ATy

2) When AT A is not invertible We apply SVD to AT A

ŷ∗ = A(AT A)−1 ATy

= A(V
[
Σ 0

]
UTU

[
Σ
0

]
VT)−1 ATy

= A(VΣ2VT)−1 ATy

= AV(Σ−1)2VT ATy

= U
[

Σ
0

]
VTVΣ−2VTV

[
Σ 0

]
UTy

= U
[

Σ
0

]
Σ−1Σ−1

[
Σ 0

]
UTy

= U
[

Ir

0

] [
Ir 0

]
UTy

= U
[

Ir 0
0 0

]
UTy

= U
[

Ir 0
0 0

] 
〈u(1), y〉
〈u(2), y〉

...
〈u(m), y〉


=

r

∑
i=1
〈u(i), y〉u(i)

b) Uniquely determined: (m = n)

[A]x = y

So,
x∗ = A−1y

• A has full rank (columns & rows).

• Equal number of constraints and parameters.

• A is square matrix with full rank so A−1 exists.

62 course notes: optimization theory and algorithms

c) Underdetermined(m < n)

• A has full row-rank.

• rank(A) = m.

• A is a wide and short matrix.

• More parameters than constraints.

• Hence there are many solutions.

Idea: pick solution x that satisfies(∗) with the shortest length in the
sense of L2 norm

x∗ = arg min
Ax=y,x∈Rn

‖x‖2

min
Ax=y,x∈Rn

‖x‖ = min
x∈Rn ,x∈A

‖x− 0‖ = ∏
A
(0)

To solve for x∗, note (from before) error vector

e = x∗ − 0 = x∗ ⊥ N(A)

x∗ ∈ N(A)⊥ = R(AT)

So we can write x∗ = ATα for some α ∈ Rm. For x∗ to be in A it
must be satisfies that Ax∗ = y

Substituting in we get

y = Ax∗ = AATα

By assumption, A is full row rank so AAT is invertible.

x∗ = ATα = AT(AAT)−1y

linear equations and least squares 63

Furthermore, we apply SVD to AAT,

x∗ = AT(AAT)−1y

= AT

[
U
[
Σ 0

]
VTV

[
Σ
0

]
UT

]−1

y

= AT(UΣ2UT)−1y

= ATUΣ−2UTy

= V

[
Σ
0

]
UTUΣ−2UTy

= V

[
Σ−1

0

]
UTy

= V

[
Σ−1

0

] 〈u(1), y〉
...

〈u(n), y〉


=

r

∑
i=1

1
σi
〈u(i), y〉v(i)

Interpretation of x∗ = arg minx ‖y− Ax‖2:

(1). Approximated solution to y = Ax
y∗ = Ax∗ is the ’best’ approximated solution in the sense of L2

norm, which means, y∗ is the closest point in R(A) to y.
(2). Minimum perturbation of y to ’feasibility’

(3). Perturb both y and A to get ’feasibility’
’Total least square’

min
δy,δA

‖
[
δA δy

]
‖F

where δA is m by n matrix and thus
[
δA δy

]
is m by n + 1, y +

δy ∈ R(A + δA).
(4). Linear regression

‖y− Ax‖2
2 =

m

∑
i=1

(yi − 〈a(i), x〉)2 =
m

∑
i=1

r2
i

64 course notes: optimization theory and algorithms

where ri defined as the residual.

Example
Let’s consider fitting a line to {(0, 6), (1, 0), (2, 0)} = (ai, yi).
The approximation takes the form of y = x1 + ax2, and we want to

choose a vector x to minimize ∑i=1[yi − (x1 + aix2)]
2 = ∑i=1 r2

i ,

‖y− Ax‖2
2 =

∥∥∥∥∥∥∥
6

0
0

−
1 0

1 1
1 2

 [x1

x2

]∥∥∥∥∥∥∥
2

2

= ‖y− Ax∗‖2
2

= 6

Solve for x∗, we have x∗ = (AT A)−1 ATy = [5,−3]T

Thus, the equation for this line is

ŷ = x∗1 + ax∗2 = 5− 3a

Variants of least square

In the previous classical least square method, we do not consider the
weights for each square of the residual(i.e., all of them are equally
weighted), however, some residuals might be more important than
the others. A very natural approach is to assign different weights to
different r2

i .

Weighted least square:

min
n

∑
i=1

w2
i r2

i = ‖W(y− Ax)‖2
2

= ‖Wy−WAx)‖2
2

= ‖ȳ− Āx‖2
2

where W = diag(w1, w2, · · · , wm) and each wi ≥ 0, ȳ , Wy
and Ā , WA. From the last two equities, we may find that this is

linear equations and least squares 65

very similar with the classic one but now we need to solve for x in a
transformed coordinate system.

In fact, we can use a more general transform with PSD:

‖W(y− Ax)‖2
2 = (y− Ax)TWTW(y− Ax) = rTWTWr

Note that r is the residual in the original coordinate system. Solve for
x∗, we have

x∗ = (ATWWT A)−1 ATWWTy

Standard LS

Weighted LS with W is diagonal

Weighted LS with W is PSD (rotation)

66 course notes: optimization theory and algorithms

L2- regularization least square

In the original least square,

x∗ = argx∈Rn
min ‖y− Ax‖2

2

we do not have preference for any specific x over any other, and
often x is a vector of resources consumed.

Regularized least square

x∗ = argx∈Rn
min ‖y− Ax‖2

2 + γ‖x‖2
2

where γ is a non negative scalar(so if γ = 0 we retrieve the original
LS)

To solve regularized least square, first note that if we have

u ∈ Rn, v ∈ Rm

We can define

Ā =

[
A
γI

]
, ȳ =

[
y
0n

]

‖Ax− y‖2
2 + γ‖x‖2

2 = ‖Āx− ȳ‖2
2

x∗ = (ĀT A)−1 ĀTȳ = (AT A + γI)−1 ATy

’Tikhanov’ regularization (also known as ridge regression)

min
x
‖W1(Ax− y)‖2

2 − ‖W2(x− x(0))‖2
2 = min

x
‖Āx− ȳ‖2

2

where Ā =

[
W1 A
W2

]
, ȳ =

[
W1y

W2x(0)

]
, and W1 and W2 are PSD.

Visualize regularized LS: min ‖Ax− y‖2
2 + γ‖x‖2

2
Recall our previous example,

x∗ = argx∈Rn min =

∥∥∥∥∥∥∥
6

0
0

−
1 0

1 1
1 2

 [x1

x2

]∥∥∥∥∥∥∥
2

2

=

[
5
−3

]

and ‖Ax∗ − y‖2
2 = 6.

linear equations and least squares 67

Draw level set for same picture

c1 = ‖Ax− y‖2
2

= ‖A(x− x∗ls + x∗ls)− y‖2
2

= ‖(Ax∗ls − y)− A(x− x∗ls)‖
2
2

= ‖(Ax∗ls − y)‖2
2 − ‖A(x− x∗ls)‖

2
2

The first term on the last equality is a scalar 6(from previous
example), and so we focus on the geometry of second term.

‖A(x− x∗ls)‖
2
2 = (x− x∗ls)

T AT A(x− x∗ls)

. Note that AT A is a PSD matrix. Understand geometry of level set of
‖A(x− xls)‖2

2 via eigenvector of the PSD matrix AT A

AT A =

[
3 3
3 5

]
=

[
−0.81 0.58

058 0.81

] [
0.84 0

0 7.14

] [
−0.81 0.58

058 0.81

]

Brief summary of Least Squares

x∗ = arg min
x∈Rn

‖y− Ax‖2
2 (∗)

(1) Standard LS variant in (∗) weights all elements of error vector
equally.(weighted LS)

(2) Standard LS measures error along standard coordinate sys-
tem.(change coordinate system)

(3) Standard LS ignores that certain elements of x may "cost" more
than others.(regularization)

68 course notes: optimization theory and algorithms

"Tikhanov regularization"

x∗ = arg min
x∈Rn

‖w1(y− Ax)‖2
2 + ‖w2(x− x(0))‖2

2

We do a simple example:

x∗ = arg min
x∈Rn

‖y− Ax‖2
2 + γ‖x‖2

2

Look at form of optional solution to

x∗ = arg min
x∈Rn

‖y− Ax‖2
2 + γ‖x‖2

2

= (AT A + γI)−1 ATy

ŷ = Ax∗ = A(AT A + γI)−1 ATy

Apply SVD to A,

A = U Σ̃VT

First thing is to analyze (AT A + γI)−1:

(AT A + γI)−1 = (VΣ̃TUTU Σ̃VT + γI)−1

= (V

[
ΣT 0
0 0

] [
Σ 0
0 0

]
VT + γI)−1

= (V

[
Σ2 0
0 0

]
VT + γVVT)−1

= (V(

[
Σ2 0
0 0

]
+ γI)VT)−1

= V

[
Σ2 + γIr

In−r

]
VT

= V

[
(Σ2 + γIr)−1

(In−r)−1

]
VT

= V



1
σ2

1+γ

. . .
1

σ2
r +γ

1
γ

. . .
1
γ


VT

linear equations and least squares 69

y∗ = Ax∗ = A(AT A + γI)−1 ATy

= U Σ̃VT


V



1
σ2

1+γ

. . .
1

σ2
r +γ

1
γ

. . .
1
γ


VT


VΣ̃UTy

= U
[

Σ 0
0 0

]


1
σ2

1+γ

. . .
1

σ2
r +γ

1
γ

. . .
1
γ



[
ΣT 0
0 0

]
UTy

= U



σ2
1

σ2
1+γ

. . .
σ2

r
σ2

r +γ

0

U
Ty

= U



σ2
1

σ2
1+γ

. . .
σ2

r
σ2

r +γ

0




〈u(1), y〉
〈u(2), y〉

...
〈u(m), y〉



= U



σ2
1

σ2
1+γ
〈u(1), y〉

...
σ2

r
σ2

r +γ
〈u(r), y〉
0
...
0


=

r

∑
i=1

σ2
i

σ2
i + γ

〈u(i), y〉u(i)

From the last equality,

r

∑
i=1

σ2
i

σ2
i + γ

〈u(i), y〉u(i)

We should note that:

70 course notes: optimization theory and algorithms

• σ2
i

σ2
i +γ

: scaling is changed by regularization. If γ = 0, then σ2
i

σ2
i +γ

= 1

and get back standard LS. If γ > 0, it’s shrinkage.

• 〈u(i), y〉: projection of data vector y along that ith direction.

• u(i): component of approximation along ith direction or ith basis
element.

7
Linear, quadratic, and quadratically-constrained quadratic
programs

7.1 Linear Programs: An Optimization Problem

Terminology and concepts regarding LP problem

Consider following problem, i.e., Liner programming with equality
and inequity constraints:

min
x∈Rn

cTx + d

s.t. Ax = b

Gx ≤ h

where x ∈ Rn, c ∈ Rn, d ∈ R, A ∈ Rq×n, b ∈ Rq, G ∈ Rm×n, h ∈ Rm.
Note that, the function p(x) = cTx + d is called the objective func-

tion and x is called the decision variable. The goal of this problem is
to find x∗ such that the optimal value p∗ of the objective function is
achieved.

This formulation is the general form, and let’s write it in matrix
form(list of vectors), that is,

A =

α(1)
T

...
α(q)

T

 G =

g(1)
T

...
g(q)

T



< α(i), x >= bi, i ∈ [q]

< G(i), x >≤ hi, i ∈ [m]

Note that, there are also two other forms which are commonly
used.

72 course notes: optimization theory and algorithms

1. Inequality form (only contains inequity constraints)

min cTx + d

s.t. Gx ≤ h

Given the general form, to get the inequality form, we simply break
the equality

Ax = b⇔ Ax ≥ b, Ax ≤ b

So we can get inequality form as follows:

min cTx + d

s.t. Gx ≤ h

Ax ≤ b

−Ax ≤ −b

2. Standard form (only contains equality and all variables are non
negative)

min cTx + d

s.t. Ax = b

x ≥ 0

Given the general form, we can also convert it into a standard
form in 2 steps.

Step 1: Introducing the slack variables s
Given the general form,

min cTx + d

s.t. Gx ≤ h

Ax = b

We add the slack variables s so that the formulation become:

min cTx + d

s.t. Gx + s = h

Ax = b

s ≥ 0

Note that the slack variables s must be non negative here.

linear, quadratic, and quadratically-constrained quadratic programs 73

Step 2: We break the decision variable x by x = x+ − x−

min cT(x+ − x−) + d

s.t. G(x+ − x−) + s = h

A(x+ − x−) = b

s ≥ 0

x+ ≥ 0

x− ≥ 0

Concepts that are frequently used in LP (and also optimization
theory):

(1) Feasible set(or feasible region): The set of points S that are
satisfying all the constraints, i.e.,

S = {x ∈ Rn|Ax = b, Gx ≤ h}

(2) Feasible solution: The points in the feasible set S.
(3) Polyhedron: intersection of finite number of half-spaces, i.e.,

{x ∈ Rn|Gx ≤ h}

(4) Polytope: bounded intersection of finitely many half-spaces.

Let p∗ be the optimal value of the given objective function under
the constraints, i.e.,

p∗ = min cTx + d

s.t. Ax = b

Gx ≤ h

Remarks on "optimal" value p∗ of program:

• Lowest cost choice amongst all feasible x.

• Possible here is no minimal choice

• possible no feasible choice

• p∗ ∈ R

Let x∗ be the optimal choice of the decision variable x, i.e.,

x∗ = arg min cTx + d

s.t. Ax = b

Gx ≤ h

Remarks on "optimal" solution x∗ of program:

74 course notes: optimization theory and algorithms

• Sometimes x∗ does not exist

• If exists, may not be unique

• x∗ ∈ Rn

Let’s consider an example:
During the The Second World War, the US army is considering

how to make their soldiers have enough nutrients...
Different nutrients in different foods and daily requirement:

Nutrients Meat Potatoes Daily Requirement
Carbohydrates 40 200 400

Protein 100 20 200

Fiber 5 40 40

The price of meat and potatoes:

Resources cost/kg
Meat $ 1

Potatoes $ 0.25

Let x1 denotes meat(kg) and x2 denotes potatoes(kg), and we
formulate this LP as follows:

Objective function:

min
x1,x2

x1 +
1
4

x2 = min
x1,x2

[
1 1

4

] [x1

x2

]

Constrains:

40x1 + 200x2 ≥ 400

100x1 + 20x2 ≥ 200

5x1 + 40x2 ≥ 40

x1 ≥ 0

x2 ≥ 0

Rewrite it as Gx ≤ h, that is,
− 1

5 −1
− 1

8 −1
−5 −1
−1 0
0 −1


[

x1

x2

]
≤


−2
−1
−10

0
0



linear, quadratic, and quadratically-constrained quadratic programs 75

LP without constraints

Consider the LP does not have constraints, so we have

p∗ = min cTx + d

x∗ = arg min
x∈Rn

cTx + d

Situation 1: c = 0 ∈ Rn

p∗ = min
x∈Rn

d = d

x∗ = arg min
x∈Rn

d = Rn

Situation 2: c 6= 0 ∈ Rn

p∗ = −∞ by convention if no minimum

x(α) = −αc α ≥ 0

cTx + d = cT(−αc) + d = α− αcTc = α− α‖c‖2
2

x∗doesn’t exist

Thus, for unconstrained LP we conclude that

p∗ =

{
d if c = 0

−∞ otherwise
x∗ =

{
Rn if c = 0

doesn’t exist otherwise

Let’s think about the geometry of cost function:

F0(x) = cTx + d

where F0(x) is the objective function and it turns out that it is also an
affine function.

Recall that the level set for F0(x),

cF0(t) = {x ∈ Rn|F0(x) = cTx + d = t}
= {x ∈ Rn|CTx = (t− d)}

76 course notes: optimization theory and algorithms

Obviously, the level set for F0(x) defines a hyperplane, and when
t = d it defines a subspace(go through the origin). Let’s consider two
level sets, for t1 and t2,

Note that c is the normal vector to x. Let’s find the relationship
between t1 and t2:

Approach (1)

t2 = cT(x(0) + αc) + d

t1 = cTx(0) + d

t2 − t1 = [cTx(0) + d + α‖c‖2]− cTx(0) = α‖c‖2

So apparently t2 > t1.
Approach (2)

∇F0(x) =


σ

σx1
(cTx + d)

...
σ

σxn
(cTx + d)

 =


c1

c2
...

cn

 = c

The gradient points out that the direction of c is the direction of
increase in F0(x). In fact, we could show that the direction of the
gradient evaluated at a certain point, is the direction that the value
of function increases more rapidly(remind yourself what you have
learned in Calculus).

Hence, to minimize the objective function, we go in opposite
direction of the gradient, that is, we should go as far as possible
along the direction of −c (unless c = 0).

Now, let’s turn back to LP with following constraints as we speci-
fied before:

Ax = b

Gx ≤ h

Interesting results and interpretation for these two kind of con-
straints:

linear, quadratic, and quadratically-constrained quadratic programs 77

(1) Ax = b (Equality constraints): force x∗ into an affine set

{x ∈ Rn|Ax = b} = ∩q
i=1{x ∈ Rn| < α(i), x >= bi}

(2) Gx ≤ h (Inequality constraints): force x∗ to be in an intersection
of half-spaces

{x ∈ Rn|Gx ≤ h} = ∩q
i=1{x ∈ Rn| < g(i), x >≤ hi}

(3) The feasible set: intersection of half-spaces and hyperplanes

S =
(
∩q

i=1{x ∈ Rn| < α(i), x >= bi}
)
∩
(
∩m

i=1{x ∈ Rn| < g(i), x >≤ hi}
)

A few remarks:

• Concepts of polyhedron and polytope.

• Ax = b→ Ax ≤ b, Ax ≥ b

Example 7.1.

A =
[
1 1

]
b =

[
2
]

G =

[
−1 0
0 −1

]
h =

[
0
0

]
Ax = b→ x1 + x2 = 2

Gx ≤ h→ x1 ≥ 0, x2 ≥ 0

Example 7.2. Generally, equality constraints move you from a higher
dimensional geometry in Rn to a slice, which is a lower dimensional
geometry. See the following example of losing 1 dimension per
linearly independent constraint:

A =
[
1 1 1

]
B =

[
1
]

78 course notes: optimization theory and algorithms

Example 7.3. In some cases, there may be no intersection between
hyperplane: [

1 1
1 1

] [
x1

x2

]
=

[
1
2

]

So the feasible set is empty, S = ∅.

This situation may also happen with inequalities constraints:[
−1 0
1 0

] [
x1

x2

]
≤
[

0
−1

]
S = ∅

Example 7.4. Generally, to facilitate sketch will often just sketch
inequity constraints:


−1 0
0 −1
1
2 −1
1 1


[

x1

x2

]
≤


0
0
1
3



linear, quadratic, and quadratically-constrained quadratic programs 79

So we have
x1 ≥ 0

x2 ≥ 0

x2 ≥ −1 +
1
2

x1

x2 ≤ 3− x1

Sketch the feasible set:

The rows of matrix G are the normal directions of the hyperplanes
that define the half-spaces, and the normal directions point outward
from the feasible set.

Example 7.5. Let’s combine all these things together, liner objective
function, linear equality constraints and linear inequity constraints.

What’s optimum? Looks like x∗ = v(3).

We may also have a facet with the feasible set

S = {x ∈ R3|x1 + x2 + x3 = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}

So there are various possibilities here for p∗ and x∗:

• 1) x∗ is unique, p∗ finite

• 2) x∗ is not unique, p∗ finite.

80 course notes: optimization theory and algorithms

• 3) There is no x∗:

a) S = ∅ (Feasible set is empty), constraint p∗ = ∞. So we say
that this LP problem is infeasible.

b) S is unbounded & no minimum, constraint p∗ = −∞

Active constraints: An optimal solution that lies at the intersec-
tion point of two constraints causes both of those constraints to be
considered active

Inactive constraints: If any of the constraint lines do not pass
through the optimal point, those constraints are called inactive.

In this example(see picture above) constraints g(1) and g(2) are
active at optimum.

Note that, we could improve(decrease) the cost if:

cT(x(0) +4) + d < cTx(0) + d

That is, 〈c,4〉 < 0, the angle between displacement vector 4 and
normal vector c is an obtuse angle(see the picture above).

Some observations:

• If you are at a vertex(doesn’t have to be optimum).

linear, quadratic, and quadratically-constrained quadratic programs 81

• Any "move" that keeps you feasible must also let you move into
the feasible set

→ opposite vector that define active constraints.

v− αg(1) − βg(2), α, β ≥ 0

• Are these any choices of α, β that decrease the cost?

cT(v− αg(1) − βg(2)) + d ≤ cTx + d

−α〈c, g(1)〉 − β〈c, g(2)〉 ≤ 0

If:
1) 〈c, g(1)〉 < 0
2) 〈c, g(2)〉 < 0
no more into feasible set will decrease the cost.

Condition for optimality:
A feasible vertex v: v ∈ {x|Gx ≤ h} is an optimal solution to LP

with cost F0(x) = cTx + d if cTg(i) < 0, ∀i ∈ active set.

Simplex Algorithm

Simplex algorithm:

• 1) Start from a feasible vertex;

• 2) Identify direction of cost decrease along an edge;

• 3) Move on that direction until any further more would violate a
previously inactive constraints.

• 4) Stop + add that new constraint(s) to active set.

• 5) Repeat

82 course notes: optimization theory and algorithms

Example 7.6. Consider the problem:

min‖Ax− b‖∞

s.t.Gx ≤ h

Recall that ‖u‖∞ = maxi∈[n]|ui|,

Introduce a helper(auxiliary) variable t ∈ R which corresponding
to the value of the norm, so the we convert the original problem into
following problem:

min t

s.t.Ax− b ≤ t1

Ax− b ≥ (−t)1

Gx ≤ h

Example 7.7. Consider the problem:

min
x
‖Ax− b‖1, A ∈ Rq×n

s.t.Gx ≤ h

Recall the definition of L1 norm:

‖u‖1 =
q

∑
i=1
|ui|

linear, quadratic, and quadratically-constrained quadratic programs 83

Let’s introduce the helper vector t ∈ Rq,

min
x,t

q

∑
i=1

ti

s.t. Gx ≤ h

Ax− b ≤ t

Ax− b ≥ −t

Example 7.8. Consider following problem:

min maxi∈[q](c
(i)T

x + di)

s.t.Gx ≤ h

This case is similar to the L∞ norm case due to the inner max func-
tion, but it is one-sided(no lower bound). So we could convert the
original one to the following:

min t

s.t.(c(i)
T
x + di) ≤ t, ∀i ∈ [q]

Gx ≤ h

Remark:
In above three examples, the decision variables in initial formula-

tion are x ∈ Rn, but in reformulation they become:
Example 7.6: (x, t) ∈ Rn ×R

Example 7.7: (x, t) ∈ Rn ×Rn

Example 7.8: (x, t) ∈ Rn ×R

Example 7.9. Finding the largest L2 ball that fits in a polytope.
Let p = {x ∈ Rn|Gx ≤ h},

It turns out that, this problem can be formulated as an LP prob-
lem.

Note that:

84 course notes: optimization theory and algorithms

• A sphere is fully parameterized by its center xc and its radius r

• A sphere (xc, r) fits in p if: xc + u ∈ p, ∀u s.t.‖u‖2 ≤ r

Now, let’s formulate as an LP. To accomplish this, observe that
xc + u ∈ p means that g(i)

T
(xc + u) ≤ hi, ∀i ∈ [q], ∀u s.t. ‖u‖2 ≤ r.

Examine the constraint g(i)
T
xc + g(i)

T
u ≤ hi at a time:

As for g(i)
T
u, what’s the direction of u in order to make this term

large as possible? It turns out, u must be aligned with g(i), the same
direction with g(i).

Furthermore, what’s the value of u that is aligned with g(i) and
satisfies |u|2 = r? It should be:

u∗ =
g(1)

‖g(1)‖
r

So, if the following is satisfied:

g(i)
T
[xc + u∗] ≤ hi

Then constraint i will be satisfied for all u such that |u| ≤ r.
Substituting in u∗, the constraints become:

g(i)
T
xc + ‖g(i)‖2r ≤ hi

Note that the constraint is linear in xc and r.
The problem of finding the largest sphere becomes the following:

max r

s.t. g(i)
T
xc + r‖g(i)‖2 ≤ hi ∀i ∈ [q]

Remarks:
(1) Optimal value (xc, r) ∈ Rn+1.
(2) xc is a variable that does not enter the objective.
(3) Possibly no solution if p is an empty set.
(4) Constraints and objective are linear in optimal variable so it is

an LP problem.
(5)Transformed some quadratic-like problem (quadratic as a

sphere is involved) into an LP, because we were able to identify
which direction of u the worst case for each constraint.

linear, quadratic, and quadratically-constrained quadratic programs 85

7.2 Quadratic program(QP)

A quadratic programming problem is formulated in a general way as
follows

p∗ = min
x∈Rn

1
2

xTHx + cTx + d

s.t. Ax = b

Gx ≤ h

The feasible set(feasible region) is illustrated as follows

Connection between LS problem and QP problem

Recall the lest square problem we have studied, it turns out that we
can convert the least square problem into a QP problem.

‖Ax− y‖2
2 = (Ax− y)T(Ax− y)

= xT AT Ax− 2yT Ax + yTy

=
1
2

xT(2AT A)x− 2yT Ax + ‖y‖2
2

However, for the converse case, we can not always manipulate the
objective of a QP into a LS problem.

Equality constrained QPs: Substitute back to the objective

A basic idea of solving such kind of problem is to substitute the
equality constraints back to the objective function so that hopefully
we can eliminate some variables(dimensions), and obtain an uncon-
strained QP problem.

Consider a formulation of such kind of problem,

p∗ = minx∈Rn
1
2

xTHx + cTx + d

s.t. Ax = b

86 course notes: optimization theory and algorithms

The feasible set could be expressed as follows

A = {x|x = x̄ + ξ, where ξ ∈ N(A)}

where x̄ is a particular solution to the equation Ax = b.
Let N be a basis for N(A), so that we can express ξ ∈ N(A) as

ξ = Nz, where z ∈ Rk, k = dim(N(A)) ≤ n.
Substitute this expression for any feasible x into the objective F0(·)

F0(x) = F0(x̄ + ξ)

= F(x̄ + Nz)

=
1
2
(x̄ + Nz)TH(x̄ + Nz) + cT(x̄ + Nz) + d

=
1
2

zT[NTHN]z + [cTN + x̄THN]z + [
1
2

x̄THx̄ + cTx + d]

=
1
2

zTH̃z + c̃Tz + d̃

where we newly define H̃, c̃T, and d̃ in the last equality. So now we
have obtain an unconstrained QP problem which is formulated as

p∗ = minz∈Rk
1
2

zTH̃z + c̃Tz + d̃

Hence, to summarize,
(1)We have got a newly lower-dimensional optimization problem

since k = dim(N(A)) ≤ n.
(2)The new problem is still a QP, but is an unconstrained QP.

Example 7.10. Markowitz Portfolio optimization/Mean/variance"
analysis Harry Markowitz(1990 Nobel Prize)

Problem formulation:

• Objective: For a fixed level of (expected) returns, we want to
minimize the variance of returns.

• There are n stocks, and we only consider a single investment
period

• Design an optimal investment strategy p ∈ Rn, where the compo-
nent pi = is the weight of your total wealth invested in the stock
i.

linear, quadratic, and quadratically-constrained quadratic programs 87

• We require ∑n
i=1 pi = 1, that is, you must invest all your money.

• We also require pi ≥ 0, that is, you are only allowed to take long
positions, and short selling is not allowed.

• Your total wealth is normalized to 1. So pi is not only weight but
also the amount of money you invest on stock i now.

Return and Variance:

• Let x ∈ Rn be a random vector denotes the return of n stocks, so
component xi is the return on the i-th stock in one period. That is,
if we invest 1 RMB in a stock at the beginning, we will get xi RMB
back at the end of this period.

• Expected returns: x̄i = E[xi]. In general, it is a known estimator
based on historical data.

• Your return (random) is ∑n
i=1 pixi = pTx

• Your expected return E[∑n
i=1 pixi] = ∑n

i=1 piE[xi] = ∑n
i=1 pi x̄i =

pT x̄

• variance in your return:

var(pTx) = E[(pTx− pT x̄)2]

= E[(pT(x− xT))2]

= E[pT(x− x̄)(x− x̄)T p]

= pTE[(x− x̄)(x− x̄)T]p

= pTΣp

With above terminology and model formulation, given a mean
return x̄ and the covariance matrix of returns Σ ∈ Rn×n, we want to
find an optimal strategy/policy p to minimize the risk(represent by
variance) subject to same minimal returns.:

The problem is formulated as:

minp∈Rn pTΣp

s.t. pT x̄ ≥ rmin

1T p = 1

p ≥ 0

Geometry of QP

Consider the general form of QP

p∗ = minx∈Rn
1
2

xTHx + xTx + d

s.t. Ax = b

Gx ≤ h

88 course notes: optimization theory and algorithms

Follow the same as LP, we would like to discuss the geometry of QP.

Figure 7.1: Plot 1

Figure 7.2: Plot 2

Figure 7.3: Plot 3

(1) Geometry of feasible set: The same as LP.
(2) Geometry of objective: Without loss of generality(w.l.o.g), we

can assume that H ∈ Sn, i.e., H is symmetric, since

xTHx =
1
2
[xTHx + xTHTx]

=
1
2

xT(H + HT)x

clearly H is symmetric.
Recal that for symmetric matrices, we have
a) Eigenvalues: purely real eigenvalues (so we can arrange them in

an order).
b) Eigenvectors: can be chosen to be ⊥ and can always diagonalize

H, i.e., we can write

H = UΛUT =
n

∑
i=1

λiu(i)u(i)T

Consider following 3 different cases for the matrix H:

• A) H ∈ Sn but not PSD

H =

[
1 0
0 −2

]

• B) H ∈ Sn
+ but not PD

H =

[
1 0
0 0

]

• C) H ∈ Sn
++

H =

[
1 0
0 2

]

Consider the 3 cases for H given above and the following different
objective functions, we plot these figures on r.h.s. for illustration.

Plot 1: F0(x) = 1
2 xTHx

Plot 2: F0(x) = 1
2 xTHx + [0.5 0.5]x

Plot 3: F0(x) = 1
2 xTHx + [0.5 0]x

Let’s consider 3 different cases for a general QP problem.
Case A: H ∈ Sn but H /∈ Sn

+ (Symmetric not PSD).
For such H, there must be an eigenvalue/vector pair (λ, u) s.t.

λ < 0.
Set xα = αu for some α ∈ R, we have

linear, quadratic, and quadratically-constrained quadratic programs 89

F0(αu) =
1
2
(αu)TH(αu) + cT(αu) + d

=
α2

2
uT[

n

∑
i=1

λiu(i)u(i)T
]u + αcTu + d

=
α2

2
λ + α < c, u > +d

Since λ < 0, let α → ∞ leads to an unbounded objective function,
i.e., p∗ = −∞.

Case B: H ∈ Sn
+ but H /∈ Sn

++ (H is PSD but not PD)
→ H has at least 1 zero eigenvalue.

Case B (i) H ∈ Sn
+ but H /∈ Sn

++ and c /∈ R(H).
There is a complement of c in R(H)⊥ = N(HT) = N(H), and thus

we can move in that direction without affecting 2nd order term while
driving 1st order term to −∞.

Let c‖ = ∏R(H)(c), and c⊥ = ∏N(H)(c), where the first one is the
component in R(A) and second one is the component in N(H).

Notice that R(H)⊥ = N(HT) = N(H), since H is symmetric. By
orthogonal decomposition lemma, there is an unique decomposition

c = c‖ + c⊥

Now, let xα = −αc⊥, where α ∈ R+.

F0(xα) =
α2

2
cT
⊥Hc⊥ + cT(−αc⊥) + d

= 0− α(c‖ + c⊥)Tc⊥ + d

= −α(cT
‖ c⊥ + cT

⊥c⊥) + d

= −α‖c⊥‖2
2 + d

Hence the function is unbounded below since we could take
α→ ∞. Therefore,

p∗ = −∞

Case B (ii) H ∈ Sn
+ but H /∈ Sn

++ and c ∈ R(H).
First, remind us of some results from previous chapter,

H =
n

∑
i=1

λiU(i)U(i)T

=
r

∑
i=1

λiU(i)U(i)T

= UrΣYT
r

90 course notes: optimization theory and algorithms

and,

H
1
2 = UrΣ

1
2 UT

r

H+ = UrΣ−1UT
r

(H
1
2)+ = UrΣ−

1
2 UT

r

where

Σ =


√

λ1 0
. . .

0
√

λr

 , Σ−
1
2 =


1√
λ1

0
. . .

0 1√
λr


Observe that

C ∈ R(H) = R(H
1
2) = R(H+) = R

(
(H

1
2)+

)
Since C ∈ R(H) and R(H) = R(H

1
2), there exists y ∈ Rn such that

C = H
1
2 y = H

1
2 (y + ξ)

where ξ ∈ N(H
1
2). Note that choice of y is not unique and the

second equality due to rank(H) = r < n.
Explicitly, we have

C = (UrΣ
1
2 UT

r)y =
r

∑
i=1

U(i)
√

λi(U(i)T
y)

Now, the question is, which y we should pick? Let’s pick the y
with min-norm, that is,

y = arg min
ȳ∈Rn

‖ȳ‖2

s.t C = H
1
2 ȳ

It turns out that, this is an under determined and rank-deficient LS
problem. So the solution to this question is given by

y = (H
1
2)+C = UrΣ−

1
2 UT

r C

So, when C = H
1
2 y, we can pick y = (H

1
2)+C. Let’s look back at

the objective to understanding such choice.

1
2

xTHx + cTx + d =
1
2

xTH
1
2 H

1
2 x + yTH

1
2 x + d

=
1
2

x̃T x̃ + yT x̃ + d

=
1
2
(x̃Tx + 2yT x̃ + yTy)− 1

2
yTy + d

=
1
2
‖x̃ + y‖2

2 −
1
2
‖y‖2

2 + d (∗)

linear, quadratic, and quadratically-constrained quadratic programs 91

In the second equality we let x̃ = H
1
2 x.

Apparently, we would like to set x̃ = −y to minimize (∗), and the
question is, is this always possible? The answer is yes.

Since y = (H
1
2)+C ∈ R((H

1
2)+) = R(H) = R(H

1
2), and x̃ = H

1
x

so x̃ ∈ R
(

H
1
2

)
= R(H). Since x ∈ Rn is unconstrained, so we can

choose x to make x̃ equal to any element of R(H), namely y.
Thus, to minimize (∗) we set x̃ = −y where x̃ = H

1
2 x, and yields

F0(x) ≥ p∗ = d− 1
2
‖y‖2

2

= d− 1
2

yTy

= d− 1
2

CT(H
1
2)+(H

1
2)+C

= d− 1
2

CT
[
Ur

] [
Σ−

1
2]
] [

UT
r

] [
Ur

] [
Σ−

1
2]
] [

UT
r

] [
C
]

= d− 1
2

CT(UrΣ−1UT
r)C

= d− 1
2

CTH+C

What is the minimizing choice of x ∈ Rn?
Since y ∈ R(H) = R(H

1
2) and x ∈ Rn is free, we can satisfy

equality and thus there are many solutions.
We would like to pick min-norm solution for x, which is given by

x∗ = (H
1
2)+ x̃

= −(H
1
2)+y

= −(H
1
2)+(H

1
2)+C

= −H+C

Case C: H ∈ Sn
++ (H is PD)

This is indeed a special case of case B(ii), and that’s because
(1)H ∈ Sn

++, then it is also in Sn
+, and so all eigenvalues are non

negative.
(2)H ∈ Sn

++, then rank(H) = n and thus R(H) = Rn, and certainly
C ∈ R(H).

From previous solution, we have

x = −H+C

= −UrΣ−1UT
r C

= −UrΣ−1UT
n C

= −H−1C

So in this case H+ = H−1. The optimal value is given by

p∗ = d− 1
2

CTH−1C

92 course notes: optimization theory and algorithms

Summary
Consider the QP problem p∗ = minx∈Rn 1

2 xTHx + cTx + d,

p∗ =

{
d− 1

2 cTH+c H is PD, or, H is PSD but not PD and c ∈ R(H)

−∞ H is not PSD, or, H is PSD but not PD and c /∈ R(H)

x∗ =

{
−H+c H is PD, or, H is PSD but not PD and c ∈ R(H)

not exist H is not PSD, or, H is PSD but not PD and c /∈ R(H)

Solving QPs via "active set" methods

min
x∈R2

(x1 − 1)2 + (x2 − 2.5)2

s.t.


−1 2
1 2
1 −2
−1 0
0 −1


[

x1

x2

]
≤


2
6
2
0
0


• at optimum some subset of inequality constraints satisfied with

equality "active" set

• Best "loose"

• If you know the active set or optimum, just solve an "equality"-
constrained QP"

By illustrative example:
Step 1

Initialize at point x(0) =

[
2
0

]
, starting with initial "working set" of

equality constraint(the fifth equality constraint):

w0 = {x|x2 = 0}

Step 2

min
x∈R2

1
2

xT

[
2 0
0 2

]
x +

[
−2 −5

]
+ (1 + 2.52)

s.t.
[
0 1

]
x = 0

Recall the linearly constrained QP problem, we need a basis for

N(

[
0
1

]
) = {x|x = α

[
1
0

]
} in this case. Let N =

[
1
0

]
,

linear, quadratic, and quadratically-constrained quadratic programs 93

H̃ = NTHN = 2

C̃T = (cTN + x̄THN) = −2

d̃ = (d + cTx +
1
2

x̄THx̄) = 0

So we have converted the problem to :

z∗ = arg min
z∈R

1
2

zTH̃z + c̃Tz + d̃

= arg min
z∈R

1
2

2z2 + (−2z) + 0

= arg min
z∈R

z2 − 2z

Take the first derivative and set it to zero, we get z∗ = 1.
So the optimum is:

x(1) = x̄ + z∗N =

[
0
0

]
+ 1

[
1
0

]
=

[
1
0

]

Step 3

Note:
(1) At this point we recognize that the equality constraint {x|x2 =

0} is no longer "binding" because we just optimized along that set.
(2) We could drop the fifth constraint from "working set" left with

w2 = ∅
(3) We are facing with an unconstrained optimization problem.

Clearly we would like to move to x(1) + ∆ =

[
1
0

]
+

[
0

2.5

]
.

(4) But there may be a "blocking" constraint in way. In this exam-
ple, this is the first constraint {x| − x1 + 2x2 ≤ 2}

(5) Instead, we solve for the a step size γ to make the constraint
light, i.e., g(i)T(x(1) + γ∆) = h1.

So we have,

[−1 2]

[
1
0

]
+ γ

[
0

2.5

]
= 2⇔ γ =

3
5

x(2) = x(1) +
3
5

∆ =

[
1

1.5

]
Step 4

This time, w3 = {x|
[
−1 2

] [x1

x2

]
= 2}.

N(
[
−1 2

]
) = {x|x = α

[
2
1

]
}, x̄ ∈ {x|

[
−1 2

] [x1

x2

]
= 2}

94 course notes: optimization theory and algorithms

We pick N =

[
2
1

]
, x̄ =

[
0
1

]
.

H̃ = NTHN = 10

C̃T = (cTN + x̄THN) = −7

d̃ = (d + cTx +
1
2

x̄THx̄) = −4

z∗ = arg min
z∈R

1
2

zTH̃z + c̃Tz + d̃

= arg min
z∈R

1
2

10z2 + (−7z)− 4

= arg min
z∈R

5z2 − 7z− 4

Take the first derivative and set it to zero, we get z∗ = 7
10 .

x(3) = x̄ + z∗N =

[
0
1

]
+

7
10

[
2
1

]
=

[
1.4
1.7

]
Note x(3) is the global optimum so we end this algorithm here.

Quadratically Constrained Quadratic Program (QCQP)

Let’s formulate such kind of problem first

min
x∈Rn

1
2

xTH0x + cT
0 x + d0

s.t.
1
2

xTHix + cT
i x + di ≤ 0 i ∈ [m]

1
2

xTH̃ix + c̃T
i x + d̃i = 0 i ∈ [q]

Note:

• If Hi = 0, ∀i ∈ [n], H̃i = 0, ∀i ∈ [q], then we have a QP.

• Typically H0 ≥ 0, Hi ≥ 0, i ∈ [m], and H̃i = 0, ∀i ∈ [q], in which
case the problem is a convex optimization problem, and thus it is
easy to solve as we will discuss in next chapter.

To see that why H̃i 6= 0 makes things difficult, let’s consider a
single equality constraint q = 1, and a scalar problem x ∈ R:

H̃1 = 1 c̃i = 0 d̃i = −
1
2

So the equality constraint becomes:

1
2

x2
1 + 0− 1

2
= 0⇔ x2

1 = 1⇔ x1 ∈ {−1, 1}

linear, quadratic, and quadratically-constrained quadratic programs 95

Notice that the feasible set is not a continuum of possibilities, i.e., it is
a distinct set so the problem is "Combinatorial".

Example 7.11. Let’s consider the QCQP with only three inequality
constraints (m = 3).

Figure 7.4: Feasible set of constraint 1

Constraint 1:

H1 =

[
2 0
0 1

2

]
cT

1 =
[
0 0

]
d1 = −1

So this constraint can be written as

1
2

xTH1x + cT
1 x + d1 ≤ 0⇔ 2x2

1 +
1
2

x2
2 ≤ 2

⇔
x2

1
1

+
x2

2
4
≤ 1

It is obviously the feasible set of this constraint corresponds to
an ellipse, and by computing the eigenvalues(lengths of major and
minor axis) and eigenvectors(directions of major and minor axis) of
H1, we are able to draw such feasible set as on the r.h.s.

Figure 7.5: Feasible set of constraint 2

Constraint 2:

H2 =

[
0 0
0 0

]
cT

2 =
[
−1 1

]
d2 = −1

So this constraint can be written as[
−1 1

]
x ≤ 1⇔

[
−1 1

] [x1

x2

]
≤ 1⇔ x2 ≤ 1 + x1

The corresponding feasible set of this constraint is illustrated on
r.h.s.

Figure 7.6: Feasible set of constraint 3

Constraint 3:

H3 =

[
0 0
0 2

]
cT

3 =
[
−1 0

]
d3 = −1

So this constraint can be written as

x2
2 − x1 − 1 ≤ 0

The corresponding feasible set of this constraint is illustrated on r.h.s.
Put all these 3 constraints together(i.e., find the intersection of

above 3 feasible sets), so we can obtain the desired feasible set for this
QCQP problem

Figure 7.7: Feasible set for this QCQP

8
Convex sets and functions

8.1 Linear/affine/convex/conic hulls & sets

Given a set of points x(i) ∈ Rn, i ∈ [m]

P = {x(1), x(2), ..., x(m)}

Consider combinations of form ∑m
i=1 λix(i),

1) The "linear" hull:

{x|x =
m

∑
i=1

λix(i), λi ∈ R, ∀i ∈ [m]}

2) The "affine" hull:

{x|x =
m

∑
i=1

λix(i), λi ∈ R,
n

∑
i=1

λi = 1}

3) The "convex" hull:

{x|x =
m

∑
i=1

λix(i), λi ∈ R, λi ≥ 0,
m

∑
i=1

λi = 1}

4) The "conic" hull:

{x|x =
m

∑
i=1

λix(i), λi ∈ R, λi ≥ 0}

Summary

λi ≥ 0 ∑m
i=1 λi = 1

Linear no no
Affine no yes
Covex yes yes
Conic yes no

Example 8.1 (Linear Hull). Let P = {x(1), x(2)}, linear hull of P =

span{x(1), · · · , x(m)} = span(P).

98 course notes: optimization theory and algorithms

Note that linear hull of P forms the smallest subspace that con-
tains P.

Example 8.2 (Affine Hull). Let P = {x(1), x(2)}, the point of the affine
hull is given by

x = λ1x(1) + λ2x(2)

= λ1x(1) + (1− λ)1x(1)

= x(2) + λ(x(1) − x(2))

Hence, aff(P) = x(2) + span(x(1) − x(2)).

Let P = {x(1), x(2), x(3)}, the point of the affine hull is given by

x = λ1x(1) + λ2x(2) + λ3x(3)

= (1− λ2 − λ3)x(1) + λ2x(2) + λ3x(3)

= x(1) + λ2(x(2) − x(1)) + λ3(x(3) − x(1))

Hence, aff(P) = x(1) + span(x(2) − x(1)) + span(x(3) − x(1)).
Note that, the affine hull is the smallest affine set contains the set

P.

Example 8.3 (Convex hull). Let P = {x(1), x(2)}, the point of convex
hull is given by

x = λ1x(1) + λ2x(2)

= (1− λ)x(1) + λx(2)

= x(1) + λ(x(2) − x(1))

Let P = {x(1), x(2), x(3)}, the point of convex hull is given by

x = λ1x(1) + λ2x(2) + λ3x(3)

= x(1) + λ2(x(2) − x(1)) + λ3(x(3) − x(1))

= x(1) + λγ(x(2) − x(1)) + (1− λ)γ(x(3) − x(1))

Example 8.4 (Conic hull). Let P = {x(1), x(2)}, the point of conic hull
is given by

x = λ1x(1) + λ2x(2)

= (λ1 + λ2)[
λ1

λ1 + λ2
x(1) +

λ2

λ1 + λ2
x(2)]

= γ[λx(1) + (1− λ)x(2)]

convex sets and functions 99

Convex Sets

Definition 8.5 (Convex set). A subset C ⊆ Rn is a convex set if
∀x, y ∈ C, then z ∈ C, ∀z = λx + (1− λ)y, λ ∈ [0, 1].

Definition 8.6 (Strictly Convex). A convex set is strictly convex if
∀x, y ∈ C, ∀λ ∈ (0, 1), z = λx + (1− λ)y ∈ rel int(C)(relative interior)

Objects with straight edges are not strictly convex sets.

Definition 8.7 (Cone). A set C ⊆ Rn is a cone if ∀x ∈ C, then
γx ∈ C, ∀γ ≥ 0.

Typical convex sets

1) Hyper-planes are convex.

Proof. Consider the hyper-plane defined as H = {x|aTx = b}, we
pick arbitrary x, y ∈ H, and show that z = λx + (1 − λ)y ∈ H
∀λ ∈ [0, 1].

aTz = aT(λx + (1− λ)y)

= λ(aTx) + (1− λ)y

= λb + (1− λ)b

= b

2) Half-spaces are convex.

Proof. Consider the half-space defined as {x|aTx ≤ b}, we use the
similar proof of the hyper-planes case, except we replace the ” = ”
with ” ≤ ” as follows

aTz = aT(λx + (1− λ)y)

= λ(aTx) + (1− λ)y

≤ λb + (1− λ)b

= b

Thus, aTz ≤ b, the points z = λx + (1− λ)y form a convex set. So the
half-space is convex.

3) If C1, · · · , Cn are convex sets, then the set C = ∩m
i=1Ci is convex.

Proof. First we pick any x, y ∈ C, therefore we have x, y ∈ Ci, ∀i ∈ [m],
and we want to show that z = λx + (1− λ)y is in the set C.

Note that x, y ∈ Ci∀i ∈ [m] implies that z ∈ Ci ∀i ∈ [m], since Ci is a
convex set ∀i ∈ [m],

Therefore, z ∈ ∩m
i=1Ci = C, the set C is a convex set.

100 course notes: optimization theory and algorithms

Example 8.8. Recall that in previous LP and QP problems, the feasible
set

{x|Ax = b}∩{x|Gx ≤ b} = {∩q
i=1{x|a

(i)T
x = bi}∩{∩m

i=1{x|g(i)
T

x ≤ hi}

is the intersection of m + q convex sets, so it is a convex set.

4) Affine transformations preserve the convexity of a set.
If a map F : Rn → Rm is affine (i.e., F(x) = Ax + b), and a set

C ⊆ Rn is convex, then the image of C under F is convex.

F(C) = {F(x)|x ∈ C} ⊆ Rm

Conversely, the pre-image of a convex set ẽ in Rm is also convex

{x|F(x) ∈ C} ⊆ Rn

.
5) Norm balls are convex (recall that a norm is defined as ‖x‖p =

(∑n
i=1 |xi|p)

1
p for p ≥ 1).

Proof. Take any two points u, v s.t. ‖u‖ ≤ 1, ‖v‖ ≤ 1, by utilizing the
triangular inequality and scaling property of a norm, we show that

‖λu + (1− λ)v‖ ≤ ‖λu‖+ ‖(1− λ)v‖
= |λ|‖u‖+ |(1− λ)|‖v‖
= λ‖u‖+ (1− λ)‖v‖
≤ λ1 + (1− λ)1

= 1

Example 8.9. The ellipsoids defined as

ξ(xc, P) = {x|(x− xc)
T P−1(x− xc) ≤ 1}

is a convex set, where P ∈ Sn
++.

Proof. First recall that l2 norm ball is convex, and consider following
affine map

F(u) = P
1
2 u + xc

Therefore the set {F(u)|‖u‖2 ≤ 1} is convex. We show that this set is
equivalent to a ellipsoid,

{F(u)|‖u‖2
2 ≤ 1} = {x|x = P

1
2 u + xc, ‖u‖2 ≤ 1}

= {x|x− xc = P
1
2 u, ‖u‖2 ≤ 1}

= {x|P−
1
2 (x− xc) = u, ‖u‖2 ≤ 1}

= {x|‖P−
1
2 (x− xc)‖2

2 ≤ 1}
= {x|(x− xc)

T P−1(x− xc) ≤ 1}

convex sets and functions 101

So the set ξ(xc, P) = {x|(x− xc)T P−1(x− xc) ≤ 1} is a convex set.
Also, remind that in previous QP chapter, we intersect these

shapes with polyhedron to get the feasible set of QCQP.

Example 8.10. Consider the set

{x|‖Ax− b‖2
2 ≤ 1} = {x|‖F(x)‖2 ≤ 1}

where F(x) = Ax− b.
This set is the pre-image(inverse image) of a convex set(norm ball

is a convex set) under an affine function, and so it’s convex.

Cones and generalized inequalities

We introduce some important cones here and first recall the following
definitions for set of symmetric matrices, set of PSD matrices and set
of PD matrices,

Sn = {x ∈ Rn×n s.t. x = xT}
Sn
+ = {x ∈ Sn s.t. vTXv ≥ 0, ∀v ∈ Rn}

Sn
++ = {x ∈ Sn s.t. vTXv > 0, ∀v ∈ Rn}

Sets of PSD and PD matrices are two class of important cones, and
recall the definition of cone: Set C is a cone if ∀x ∈ C and θ ∈ R+(i,e.
θ ≥ 0), θx ∈ C. In particular,

1) Sn
+ is a cone.

Since ∀X ∈ Sn
+ and ∀θ ≥ 0, we have

vT(θX)v = θvTXv > 0

We write:

X ∈ Sn
+ ⇔ X ≥ 0

X ∈ Sn
++ ⇔ X > 0

2) Sn
+ is a convex cone.

Let A ∈ Sn
+, B ∈ Sn

+, and consider the combination λA + (1− λ)B
where λ ∈ [0, 1].

First note that (λA + (1− λ)B)T = λAT + (1− λ)BT = λA + (1−
λ)B ∈ Sn, so this combination is still a symmetric matrix.

Secondly, we show that vT(λA + (1− λB))v = λ(vT Av) + (1−
λ)(vT Bv) ≥ 0, so this combination is still a PSD matrix.

Therefore, Sn
+ is convex and thus it is a convex cone.

3) Sn
++ is also a convex cone.

102 course notes: optimization theory and algorithms

The proof follows the same as previous case (2) except we replace
≥ with >.

Cones lead to "generalized" inequalities.
We want to extend idea of orderings to Rn (i.e., extend the com-

parison between two real numbers to two real vectors/matrices), and
let’s start with a "proper" cone K ∈ Rn.

Definition 8.11 (Proper cone). A cone K ∈ Rn is called a proper cone
if it satisfies the following

• K is convex.

• K is closed.

• K is solid, which means it has nonempty interior.

• K is pointed, which means that it contains no line (or equivalently,
x ∈ K,−x ∈ K ⇒ x = 0).

A proper cone K can be used to define a generalized inequality
≤K, says "less-than-or-equal to with respect to cone K".

Interpretation of ≤K and < K:

x ≤K y⇔ 0 ≤K (y− x)⇔ y− x ∈ K

x <K ⇔ y− x ∈ int(K)

where the set int(K) denotes the points in the interior of K.

Example 8.12. Let a proper cone k = Sn
+, which denote the ordering of

matrices, whose elements of vector space are in Sn. So,

X ≤k Y ⇔ 0 ≤k Y− X.

Thus, Y− X ∈ Sn
+.

→ It true since that vT(Y− X)v ≥ 0, ∀v ∈ Rn

→ All eigenvalues are non-negative.
Note: The interior of Sn

+ is Sn
++.

The following 2 generalized inequalities come up so often, so we
assume that they are the default setting.

1. If we compare 2 vectors x, y ∈ Rn, we write

x ≤ y⇔ x ≤Rn
+

y⇔ y− x ∈ Rn
+

2. If we compare 2 symmetric matrices, we write:

x ≤ y⇔ x ≤Sn
+

y⇔ y− x ∈ Sn
+

x < y⇔ y− x ∈ Sn
++

convex sets and functions 103

Example 8.13. Consider the set {x ∈ Rn|x1 A1 + x2 A2 + ... + xn An ≤
B}, where Ai ∈ Sm B ∈ Sm. The inequity here is called the "linear
matrix inequality", and notice that F(x) = B−∑n

i=1 xi Ai is an affine
function of x.

Hence,

{x ∈ Rn|x1 A1 + x2 A2 + ... + xn An ≤ B} = {x ∈ Rn|F(x) ≥ 0}
= {x ∈ Rn|F(x) ∈ Sn

+}
= F−1(Sn

+)

So, it is a convex set, since the set is the pre-images of a convex set
Sn
+ under an affine transform.

Properties of Convex Sets:

1. Separating hyperplane:

If S, T are convex sets in Rn and disjoint, i.e, S ∩ T = ∅, then there
exists an a ∈ Rn and b ∈ R s.t.

aTx ≥ b, ∀x ∈ S

aTx < b, ∀x ∈ T

Hence,
aTy− aTx = aT(y− x) ≥ 0

2. Supporting hyperplanes:

If S is a convex set, then ∀x0 ∈ δS (boundary of S) and ∀x ∈ S,
∃a ∈ Rn such that

aTx ≤ aTx0 ⇔ aT(x− x0) ≤ 0

Convex Functions

Let F have a convex domain, then F : Rn → R is a convex function if
∀x, y ∈ dom(F):

F(λx + (1− λ)y) ≤ λF(x) + (1− λ)F(y), ∀λ ∈ [0, 1]

and F is strictly convex if

F(λx + (1− λ)y) < λF(x) + (1− λ)F(y), ∀ λ ∈ (0, 1)

Note: F is a "concave" function if −F is convex.
Definition of convex:

F(λu + (1− λ)v) ≤ λF(u) + (1− λ)F(v)

104 course notes: optimization theory and algorithms

And F(λu + (1− λ)v) can be written as F(v + λ(u− v)):

F(λu + (1− λ)v) ≤ λF(v) + λ(F(u)− F(v))

line segment connecting (u, F(u)) to (v, F(v)) always above bottom
of bowl.

Sometimes define an "extended value" function

F̃(x) =

{
F(x) if x ∈ dom(F)

∞ else

Example 8.14 (Examples of convex/concave functions). Refer to the
figures on r.h.s.

(1) Linear function and affine functions are both convex and
concave.

(2) F(x) = x2 is convex.
(3) F(x) = log x with dom F = R++ is a concave function.
(4) The norm function ‖x‖ is convex.
Since we have

‖λx + (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖
= λ‖x‖+ (1− λ)‖y‖

(5) F(x) = 1
x is convex on R++, and is concave on R−−.

Definition 8.15 (Epigraph). Recall the epigraph of a function is a set
of points lying on or above its graph:

epi F = {(x, t)|t ≥ F(x), x ∈ dom F, t ∈ R}

Definition 8.16. F is a convex function iff epi F is a convex set

Definition 8.17 (Sublevel sets). Recall that, the α-sublevel set of a
function F is defined as

C(α) = {x|F(x) ≤ α, x ∈ domF}

for α ∈ R.

Theorem 8.18. If F is convex, then its sub-level sets are all convex sets.

Note: The converse of this theorem is not true. If all sub-level sets
of a function are convex sets, the function is "quasi-convex" but not
necessarily convex.

Three kinds of convex functions:
1) Non-negative sums of convex functions are convex.

convex sets and functions 105

Let F(x) = ∑m
i=1 aiFi(x), Fi are convex function and dom F =

∩m
i=1dom Fi.
We show that such F is a convex function,

F(λx + (1− λ)y) =
m

∑
i=1

aiFi(λx + (1− λ)y)

≤
m

∑
i=1

ai[λFi(x) + (1− λ)Fi(y)]

= λ[
m

∑
i=1

aiFi(λ)] + (1− λ)[
m

∑
i=1

aiFi(y)]

= λ[F(x)] + (1− λ)[F(y)]

2) Convex functions of affine transformations of variables is still a
convex function.

Let g(x) = F(Ax + b), where F(·) is convex, and notice that
dom g = {x|Ax + b ∈ dom F}.

We show that function g is convex in x,

g(λx + (1− λ)y) = F(A(λx + (1− λ)y) + b)

= F(λ(Ax + b) + (1− λ)(Ay + b))

≤ λF(Ax + b) + (1− λ)F(Ay + b)

= λg(x) + (1− λ)g(y)

3) The max of a pair of convex functions is a convex function:

g(x) = max{F1(x), F2(x)}

More examples

Let’s consider following three kinds of functions we have mentioned
above,

F(x) = ∑ αiFi(x), ∀αi ≥ 0

g(x) = F(Ax + b)

g(x) = max{F1(x), F2(x)}

Example 8.19. Consider the function

F(x) =
n

∑
i=1

log(bi − aT
i x)−1

=
n

∑
i=1
−log(bi − aT

i x)

where x ∈ Rn, ai ∈ Rn, bi ∈ R.

106 course notes: optimization theory and algorithms

1) Note: −log(·) is a convex function, and

dom− log(·) = R++

domF = {x|bi − aT
i x > 0, ∀i ∈ [m]} = {x|bi − aT

i x ∈ R++, ∀i ∈ [m]}

So, the domain of this function is the inverse image of R++(a
convex set) under an affine transformation, and therefore it is a
convex set.

2) Each function is a convex function of an affine transformation of
x, therefore the sum of these functions is still a convex function.

Example 8.20.
F(x) = sup

y∈C
‖y− x‖

Note that C is not necessarily to be a convex set.

1. Function y − x is an affine function w.r.t x and therefore it is a
convex function of x.

2. ‖ · ‖ is a norm function, so it is a convex function of its argument.

3. F(x) = supy∈C ‖y− x‖, y ∈ C is the basic max of a bunch of convex
functions, each indexed by a y ∈ C

Example 8.21.
F(x) = inf

y∈C
‖y− x‖

→ Generally this function is NOT convex in x.
→ If the set C is a convex set, then this function is convex in x.

Theorem 8.22 (Projection theorem). If h(x, y) is convex in (x, y), then
F(x) = infy h(x, y) is convex in x.

Idea: Shine light along y-axis, and get the shadow on x− z plane,
which is an epi F and it is a convex set.

Proof. Since h(x, y) is convex in

[
x
y

]
∈ dom h, the epigraph of h is

given by

epi h = {(x, y, t)|t ≥ h(x, y),

[
x
y

]
∈ dom h}

That’s the black bowl in the graph.
Now consider:

F(x) = inf
y:
[
x y

]T
∈dom h

h(x, y)

convex sets and functions 107

So the domain is given by

dom F = {x|∃ y s.t.(x, y) ∈ dom h}

= {
[
1 0

] [x
y

]
|
[

x
y

]
∈ dom h}

Note that this domain is an affine map of all points in a convex set,
and therefore dom F is a convex set.

Consider the epigraph of F,

epi F = {(x, t)|t ≥ inf
y:
[
x y

]T
∈ dom h, x ∈ dom F}

= {
[
1 0 1

] x
y
t

 |t ≥ h(x, y),

[
x
y

]
∈ dom h}

So this set is a convex set, and since it is the epigraph of F, F must
be a convex function.

Example 8.23. The function

F(x) = inf
y∈C
‖x− y‖

is a convex function if C is a convex set.

1. x− y is affine in x

2. ‖ · ‖ is a convex function for all norms.

3. Apply projection theorem where dom h = {
[

x
y

]
|x ∈ Rn, y ∈ C} is

a convex set and x is unconstrained.

Characterizing Convexity by Restricting to a Line

Theorem 8.24. F : Rn → R is convex if and only if g : R→ R,

g(t) = F(x0 + tv), dom g = {t|x0 + tv ∈ dom F}

is convex for any x0 ∈ dom F, v ∈ Rn.

• g(t) is function restricted to a line/slice

• If all possible slices convex then so is F.

Note: need x0 + tv ∈ dom F, also note dom F is a convex set.

g(t) = gx0,v(t) = F(x0 + tv)

108 course notes: optimization theory and algorithms

dom(gx0,v) = {t|x0 + tv ∈ domF}

Therefore dom(gx0,v) is convex set for all x0, v.

Proof. First, we show that, if F is convex then g is convex.

∀t1, t2 ∈ dom g, λ ∈ [0, 1]

g(λt1 + (1− λ)t2) = F(x0 + [λt1 + (1− λ)t2]v)

= F(λ[x0 + t, v] + (1− λ)[x0 + t2v])

≤ λF(x0 + t1v) + (1− λ)F(x0 + t2v)

= λg(t1) + (1− λ)g(t2)

Second, we show that if g is convex in t, ∀(x0, v), then F is convex.
Pick arbitrary x, y ∈ dom F, let x0 = x, v = (y− x), consider gx0,v(t)

for t ∈ [0, 1]:

gx0,v(t) = F(x0 + tv)

= F(x + t(y− x))

= F((1− t)x + ty)

Since gx0,v is convex in t, so F is convex in t. (t plays role of λ)

Example 8.25.

F(x) = log det(x−1)

Note:
(1) dom F = Sn

++ ⇔ PD matrices.
(2) Sn

++ ⊂ Sn ← vector space of n× n symmetric matrices.
To show this function F is a convex function, we will show it is

convex for all "lines".
The "line" in Sn is x0 + tH, where x0 is a symmetric PD matrix,

t ∈ R and H is symmetric matrix in Sn. So x0 + tH is a family of
symmetric matrices.

convex sets and functions 109

Notice that x0 ∈ Sn
++, so x−1

0 exists and also x
1
2
0 exists.

g(t) = log det(x0 + tH)−1

= log det[(x
1
2
0 x

1
2
0 + tx

1
2
0 x−

1
2

0 + Hx−
1
2

0 x
1
2
0)
−1]

= log det[x−
1
2

0 (I + tx−
1
2

0 Hx−
1
2

0)−1x−
1
2

0]

= log det x−1
0 + log det[(I + tx−

1
2

0 Hx−
1
2

0)−1]

= log det x−1
0 + log(det(I + tM)−1)

= log det x−1
0 + log[

n

∏
i=1

(1 + tλi)
−1]

= log det x−1
0 −

n

∑
i=1

log(1 + tλi)

In above inequalities we have utilized the property that det(AB) =

det(A) · det(B) and the determinant of a matrix equals to the product
of its eigenvalues.

Also, notice that

(I + tM)v = v + tλv = (1 + tλ)v

so the eigenvalues of (I + tM) are 1 + tλi.
Note:

1. 1 + tλi is an affine map in t.

2. Function −log(·) is convex.

3. Combine above results, since it is a sum of convex functions, g(t)
is convex in t (and thus F(x) is convex in x).

Example 8.26. Consider the function of finding the max eigenvalue,

F(X) = λmax(X)

where dom F = Sn, and this function F is convex.
We illustrate this fact by two parts.
(a) First, we have

λmax(X) = max
v:‖v‖=1

vTXv

By eigen-decomposition of symmetric matrices,

vTXv = vTQΛQTv

= ṽTΛṽ

=
n

∑
i=1

(ṽi)
2λi

≤ λmax(X)

110 course notes: optimization theory and algorithms

(b) Express x as following

vT(αX1 + βX2)v = αvTX1v + βvTX2v

So vTXv is linear in X, and therefore F(X) is the max of a bunch of
functions that are linear in X, and thus it is convex.

Two more examples

1. F(x) = σmax(X) is convex on dom F = Rn×m.

2. F(x) = (det X)
1
n , is concave on dom F = Sn

++.

"First-order" condition

Theorem 8.27. A differentiable function F (i.e., dom F is open and gradients
exist everywhere in domain F) is convex if and only if ∀x, y ∈ dom F:

F(y) ≥ F(x) +∇F(x)T(y− x) (∗)

and is strictly convex if (∗) is a strict inequality for all x 6= y.

Note that:
(1) The affine function of y given by F(x) +∇F(x)T(y − x) the

First-order Taylor approximation, and the inequality above states that
this approximation is an global underrestimator of F.

(2) There is a tangent plane that is a supporting hyperplane of epi
F.

Proof. First, assume F is convex, and we show that (∗) holds.
Take any (x, y) ∈ dom F, and by definition of convex function,

F((1− λ)x + λy) ≤ (1− λ)F(x) + λF(y)

Rearrange yields

F(x + λ(y− x))− F(x)
λ

≤ F(y)− F(x)

Let λ→ 0 and observe that

limλ→0
F(x + λ(y− x))− F(x)

λ
= ∇F(x)T(y− x)

Therefore,
∇F(x)T(y− x) ≤ F(y)− F(x)

Hence, the inequality (∗) holds (You can also do above procedure in
1-dimension, try it by yourself).

Secondly, we assume (∗) holds and show that F is convex.

convex sets and functions 111

Take any (x, y) ∈ dom F, then ∀λ ∈ [0, 1], z = λx + (1− λ)y ∈
dom F since dom F is convex.

Using (∗) for 2 times we get:

F(x) ≥ F(z) +∇F(x)T(x− z)

F(y) ≥ F(z) +∇F(x)T(y− z)

Compute

λF(x) + (1− λ)F(y) ≥ F(z) +∇F(z)T [λ(x− z) + (1− λ)(y− z)]

= F(z) +∇F(z)T [λx− λz + y− z− λy + λz]

= F(z) +∇F(z)T [λx + (1− λ)y− z]

= F(z) +∇F(z)T [z− z]

= F(z)

= F(λx + (1− λ)y)

Therefore, the function F is convex given that the inequality (∗)
holds.

Connect 1-st order condition with epi F
Recall that (x, t) ∈ epi F if t ≥ F(x), and the 1-st order condition:

∀x, y ∈ dom F, F(y) ≥ F(x) +∇F(x)T(y− x).
Consider any (y, t) ∈ epi F:

t ≥ F(y) ≥ F(x) +∇F(x)T(y− x)

⇔ 0 ≥ F(x)− t +∇F(x)T(y− x)

=
[
∇F(x)T −1

] [y− x
t− F(x)

]

=
[
∇F(x)T −1

] [y
t

]
+ (−∇F(x)Tx + F(x))

"Second-order" condition

Theorem 8.28. If F is everywhere twice differentiable, then F is convex if
and only if its Hessian ∇2F(x) ≥ 0 (i.e., PSD) for all x ∈ dom F.

Proof. Similarly, we prove this theorem in two steps.
Firstly, assume F convex, and we show that ∇2F(x) ≥ 0.
Let xo ∈ dom F(any point), v ∈ Rn(a direction), then z = x0 + λv is

in dom F if λ > 0 sufficiently small.
By Taylor approximation,

F(z) = F(x0) +∇F(x0)
T(λv) +

1
2
(λv)

T∇2F(x0)λv + O(λ3)

112 course notes: optimization theory and algorithms

Rearrange yields

1
2

λ2vT∇2F(x0)v + O(λ3) = F(z)− F(x0)−∇F(x0)
T(λv)

The right-hand side is ≥ 0 by first-order-convexity result.
Continuing, divide through by λ2 to get:

1
2

vT∇2F(x0)v +
O(λ3)

λ2 ≥ 0

In above equation, O(λ3) means this is ≤ Mλ3 (Big-O notation), so
O(λ3)

λ2 ≤ Mλ.
Letting λ→ 0, we get

1
2

vT∇2F(x0)v ≥ 0

So ∇2F(x0) is PSD for all x0 ∈ dom f , since v ∈ Rn can be chosen
arbitrarily.

Secondly, assume ∇2F(x0) ≥ 0, ∀x0 ∈ dom F, and we show that F
is convex.

Apply Taylor approximation with remainder ∀x, y ∈ dom F,

F(y) = F(x) +∇F(x)T(y− x) +
1
2
(y− x)T∇2F(z)(y− x)

where Hessian is evaluated at some z between x and y(Mean value
theorem).

Since ∇2F(z) ≥ 0, we have

F(y) ≥ F(x) +∇F(x)T(y− x)

Then we could go back to 1st−order-condition, which is true for ∀x, y.
So F must be convex.

Here we can give some examples:

1. F(x) = x2, dom F = R, F′′(x) = 2 > 0, ∀x ∈ R, so F is strictly
convex.

2. F(x) = x3, dom F = R, F′(x) = 3x2, F′′(x) = 6x, so if we restrict
the domain as dom F = R+ then F is convex.

3. F(x) = xα, dom F = R+, F′′(x) = α(α− 1)xα−2, where α(α− 1) > 0
if α > 1 or α < 0 and α(α− 1) < 0 if 0 < α < 1. xα−2 ≥ 0 since
dom F = R+.

4. F(x) = log x, dom F = R++, F′(x) = 1
x , F′′(x) = − 1

x2 < 0, so it is
concave.

convex sets and functions 113

5. F(x) = x log x, dom F = R++, α2

αx2 F(x) = α
αx [loge(x) + x

x] =
1
x > 0,

so it is convex.

6. F(x) = eαx, dom F = R, F′′(x) = α2eαx, so it is convex for for
α 6= 0.

7. F(x) = 1
2 xT Hx + cTx + d, the gradient and Hessian of F are given

by

∇F(x) =
1
2
(H + HT)x + c = H̃x + c

∇2F(x) = H̃

If H̃ ≥ 0, then it is convex; If H̃ ≤ 0, then it is concave.

If H̃ is neither PSD or negative semi-definite, then F is neither
convex or concave.

Example 8.29. Consider following quadratic function,

F(x, y) = x2 + y2 + 3xy

=
[

x y
] [1 3

2
3
2 1

] [
x
y

]

=
1
2

[
x y

] [2 3
3 2

] [
x
y

]

Compute the eigenvalues of the matrix,

det(

[
2 3
3 2

]
− λI) = det

[
2− λ 3

3 2− λ

]
= (2− λ)2 − 9

= (λ− 5)(λ + 1)

The matrix has one negative eigenvalue and one positive eigen-
value, so it is neither PSD or negative PSD.

Also, if we try −45◦ line, we will see slice is not convex,

F(x,−x) = x2 + (−x)2 + 3x(−x) = 2x2 − 3x2 = −x2.

Example 8.30. Geometric mean
√

x1x2 = F(x1x2), dom F = R+ ×R+,
is concave.

The Hessian of F is given by

∇2F(x) = −
√

x1x2

y

 1
x2

1
− 1

x1x2

− 1
x1x2

1
x2

2


There are two ways to determine the type of the Hessian(e.g.,

whether it is PSD)

114 course notes: optimization theory and algorithms

1) Calculate eigenvalues as we did in previous example.
2) Use definition of negative PSD (or PSD):

vT∇2F(x)v = −
√

x1x2

2
[
v2

1
x2

1
− 2v1v2

x1x2
+

v2
2

x2
2
]

= −
√

x1x2

2
(

v1

x1
− v2

x2
) ≤ 0

So it is concave in (x1, x2). More generally, the function F(x) =

(∏n
i=1 xi)

1
n is concave in x ∈ Rn.

Consequence of convexity conditions for differentiable F

By 1-st order condition, if F is convex, then we have

F(y) ≥ F(x) +∇F(x)T(y− x), ∀x, y ∈ dom F

What if ∇F(x∗) = 0 ∈ Rn for some x∗ ∈ dom F? In this case we
may have

F(y) ≥ F(x∗) +∇F(x∗)T(y− x∗) = F(x∗), ∀y ∈ dom F

Therefore, if we can find an x∗ ∈ dom F such that ∇F(x∗) = 0,
then it is also a global minimum.

Local minima vs Global minima

Definition 8.31. x∗ is a local minimum of F if ∃ε > 0 such that for all
x satisfying ‖x− x∗‖ < ε we will have F(x) ≥ F(x∗).

Theorem 8.32. Suppose F is twice differentiable (not necessarily to be
convex), then we have

(1) If x∗ is a local optimum, then ∇F(x∗) = 0 and ∇2F(x∗) ≥ 0.
(2) If ∇F(x∗) = 0 and ∇2F(x∗) > 0, then x∗ is a local minimum.

Proof of (1). Let x∗ be a local optimum, consider any v:

limt→0+
F(x∗ + tv)− F(x∗)

t
= ∇F(x∗)Tv ≥ 0

It’s non-negative since x∗ is local minimum.
This implies that ∇F(x∗) = 0 because v is arbitrary.
E.g. If ∇F(x∗) 6= 0, then take v = −∇F(x∗) and we would get a

negative one unless ∇F(x∗) = 0.
Consider the second derivative,

limt→0+
F(x∗ + tv)− F(x∗)

t2 = limt→0+
F(x∗) +∇F(x∗)T(tv) + 1

2 (tv)
T∇F(x∗)(tv) + o(t2)− F(x∗)

t2

= limt→0+
1
2

vT∇2F(x∗)v +
σ(t2)

t2

=
1
2

vT∇2F(x∗)v

≥ 0

convex sets and functions 115

Since v is arbitrary and by definition of PSD, the Hessian ∇2F(x∗) ≥
0

For twice differentiable functions, what we are told here is:
x∗ is a local optimum⇒ ∇F(x∗) = 0 and ∇2F(x∗) ≥ 0.
Furthermore, if the function F is convex, we may have
⇒ ∇2F(x) ≥ 0, ∀x ∈ domF
⇒ ∇F(x∗) = 0⇒ x∗ is global optimum.
Put together to say: If F is convex, then the local optimum is also

the global optimum.

Proof of (2). If ∇F(x∗) = 0 and ∇2F(x∗) > 0, then x∗ is a local
optimum.

Again, use Taylor expansion:

F(x) = F(x∗ + tv)

= F(x∗) +∇F(x∗)T(tv) +
1
2
(tv)T∇2F(x∗)(tv) + o(‖v‖2)

= F(x∗) +
1
2

t2vT∇2F(x∗)v + o(‖v‖2)

⇒ If t is sufficiently small, the quadratic term dominates the
o(‖v‖2) term.
⇒ Any point in neighborhood sufficiently small (meaning t suffi-

ciently small) has evaluation larger than F(x∗).
⇒ x∗ is local optimum.

Remarks:

1. It is possible that there is no local or global optimum.

This graph is on inf F(x) = 0 but there is no x ∈ domF = R

achieves F(x) = 0.

2. The above story is for unconstrained optimization problem, since
we consider the entire domain above.

Composition of Functions

Let F(x) = h(g(x)) where g : Rn → R and h : R → R. Then
F : Rn → R is convex if:

1. g is convex, h is convex and non-decreasing. Or,

2. g is concave, h is convex and non-increasing.

116 course notes: optimization theory and algorithms

Prove: For differentiable functions, can also prove for non-differentiable.
(i)

• F′(x) = h′(g(x))g′(x).

• F′′(x) = h′′(g(x))g′(x)g′(x) + h′(g(x))g′′(x) ≥ 0

Note: Doing derivative for n = 1 without loss of generality be-
cause we showed a convex function must be convex along all lines.

(ii)
F′′(x) = h′′(g(x))(g′(x))2 + h′(g(x))g′′(x) ≥ 0

Can extend to multiple dimensions.

gi : Rn → R, h : Rk → R

F(x) = h(g(x))

= h(g1(x)g2(x)...gk(x))is convex

· g is convex and h is convex and non-decreasing in each of its
arguments.

Example 8.33. The function F(x) = exp(g(x)) is convex, where g(x) is
convex.

Apparently we could let h(·) = exp(·), and since it is convex and
non-decreasing, F(x) is convex.

Example 8.34. The function F(x) = 1
g(x) is convex if g(x) is concave

and positive, ∀x.
We let F(x) = h(g(x)), where h(x) = 1

x . Since dom h = R++, h is
convex.

Note that h is convex and h(x) = 1
x is non-increasing on R++, so if

g(·) is concave, then F is a convex function.

Example 8.35. The function F(x) = −∑k
i=1 log(−Fi(x)) is convex on

{x|Fi(x) < 0 ∀i ∈ {1, · · · , k}} if all Fi are convex.
Consider the domain of this F, note that for each Fi(x) < 0 ⇔

−Fi(x) > 0, so dom F = ∩k
i=1{x|Fi(x) < 0}. It is the intersection of

sublevel sets of convex functions, and therefore it is a convex set.
Since F(x) = ∑k

i=1−log(−Fi(x)) is the positive sum of convex
functions, it is convex eventually.

9
Convex optimization

Introduction to convex optimization problems

General form: Consider the functions Fi(x), hi(x) : Rn → R.

min
x∈Rn

F0(x) "objective function"

s.t. Fi(x) ≤ 0, i = 1...m inequality constraints

hi(x) = 0, i = 1...p equality constraints

Feasible set for this question:

C = {x|Fi(x) ≤ 0, i = 1...m, hi(x) = 0, i = 1...p}

Optimal value: p∗ = infx∈C F0(x). Note that it could be ∞, and also
could be empty.

Optimal points: {x ∈ C|F0(x) = p∗}. Note that it could be empty,
and also could be not unique.

Example 9.1. Consider the optimization problem:

min
x

min x1 + x2

s.t.− x1 ≤ 0

− x2 ≤ 0

1− x1x2 ≤ 0

So x∗ =

[
1
1

]
and p∗ = 2, as illustrated in the figure.

Convex optimization problem:

min
x

F0(x)

s.t.Fi(x) ≤ 0 i = 1, · · · , m

aT
i x− bi = 0 i = i, · · · , p

118 course notes: optimization theory and algorithms

aT
i + bi = 0 is often written as:

aT
1

aT
2
...

aT
p

 x =


b1
...

bP

⇔ Ax = b

1. All Fi, i ∈ {0, 1, ...n} are convex functions.

2. All equality constraints are affine.

Remarks:

1. Think about feasible set,

C = (∩m
i=1{x|Fi(x) ≤ 0}) ∩ (∩p

i=1{x|a
T
i x− bi = 0})

For the first part, each is a sublevel set of a convex function there-
fore convex.

For the second part, each is an affine set and therefore convex.

So the feasible set C is an intersection of p + m convex sets, and
therefore it is a convex set.

2. Note: hi(x) are affine(and not more general convex) to keep the set
{x|hi(x) = 0} a convex set.

Let hi(x) = x2 − 1:

{x|x2 − 1 = 0} = {x|x2 = 1} = {±1}

min
x

F0(x)

s.t. Fi(x) ≤ 0 i = 1, ..., m

aT
i x− bi = 0 i = 1, ..., p

• Fo, F1, ..., Fm are convex

• Ax− b = 0

Definition 9.2. x ∈ C is local optimum for a constrained optimization
if ∃ε > 0, s.t.∀y ∈ C and ‖x− y‖ < ε, we have F0(y) ≥ F0(x)

Theorem 9.3. For a convex optimization problem a local minimum is also a
global optimum.

We prove this theorem for two particular instances:

1. Unconstrained optimization problem

convex optimization 119

2. Differentiable objective function F0

Proof. For the first instance, suppose x ∈ C is not globally optimal
but is locally minimal.
→ Because not globally optimal, ∃y ∈ C s.t. F0(y) < F0(x)
→ Consider z = λx + (1− λ)y ∈ C, because C is convex, so we have

F0(z) ≤ λF0(x) + (1− λ)F0(x)

< λF0(x) + (1− λ)F0(x)

= F0(x)

→ By picking λ sufficiently close to 1 (but < 1), z ∈ C is in neigh-
borhood of x and has a lower cost, so x cannot be local minimum,
and thus lead to a contradiction.

Hence, for a unconstrained convex optimization problem, a local
minimum must also be global minimum.

As for the case F0 is differentiable and convex

min
x

F0(x)

s.t. Fi(x) ≤ 0 i = 1, ..., m

aT
i x− bi = 0 i = 1, ..., p

• For unconstrained case x∗ is optimal iff ∇F(x∗) = 0

• For constrained optimization it is very possible there is no x ∈ C
satisfies ∇F(x) = 0

Therefore, in this case a local minimum is also a global mini-
mum(recall that first order condition is a necessary condition for a
local optimum but not a sufficient condition).

Theorem 9.4. For a convex optimization problem with (convex) feasible
set C and differentiable (convex) objective F0 : Rn → R, a point x∗ ∈ C is
optimal iff:

∇F0(x∗)T(y− x∗) ≥ 0 ∀y ∈ C

That is, start at the point x∗ ∈ C, move into feasible set in direction v
and then evaluate F0(x∗ + tv). F0(x∗ + tv) must be non-decreasing for
t ≥ 0.

Proof. First assume the inequality holds, and we show that x∗ is the
global optimum. A

Apply 1-st order condition for optimality, i.e. ∀y ∈ C:

F0(y) ≥ F0(x∗) +∇F0(x∗)T(y− x∗)

≥ F0(x∗)

120 course notes: optimization theory and algorithms

where the second term on the r.h.s. must be non-negative by our
assumption.

So for ∀y ∈ C, we have F0(y) ≥ F0(x∗). Hence x∗ is a global
optimum if the inequality holds.

Secondly, we show that, if x∗ is the global optimum, then the
inequality must holds. We prove this by contradiction.

Suppose that ∃y ∈ C such that ∇F0(x∗)T(y− x∗) < 0.
Look at the point z defined as

z = λy + (1− λ)x∗

= x∗ + λ(y− x∗)

All the points z defined above must be feasible ∀λ ∈ [0, 1], because
the set C is a convex set.

We claim that, there exists some points z such that F0(z) < F0(x∗),
by showing that

dF0(z)
dλ

∣∣∣∣
λ=0

=
d

dλ
F0(x∗ + λ(y− x∗))

∣∣∣∣
λ=0

= ∇F0(x∗)T(y− x∗)

< 0

Since the slope(the gradient) is strictly negative(as we assume the
inequality does not hold), the value of F0(z) will decreases as λ > 0
increase, so we will have a smaller value F0(z) compared to F0(x∗),
which contradicts the global optimality of x∗.

Therefore, if the inequality does not hold, x∗ will not be the global
optimum. So x∗ is the global optimum if and only if the inequality
holds.

Quasi-convex minimization

Definition 9.5. A function F0 : Rn → R is called quasi-convex if its
domain and all its sub-level sets are convex sets.

Definition 9.6. A function F0 : Rn → R is called quasi-concave if −F0

is quasi-convex, that is, all its super-level sets are convex sets.

Definition 9.7. If a function is both quasi-convex and quasi-concave,
i.e., all its sub-level sets and super-levels are convex sets, then it is
called quasi-linear.

Consider the Quasi-convex minimization problem as follows,

min
x

F0(x) quasi-convex

s.t. Fi(x) ≤ 0 i = 1, · · · , m convex

aT
i − bi = 0 i = 1, · · · , m affine

convex optimization 121

We can rewrite this formulation into the form of feasibility problem,

min
x

s.t. F0(x) ≤ t

Fi(x) ≤ 0 i = 1, · · · , m

aT
i − bi = 0 i = 1, · · · , m

where the constraint F0(x) ≤ t defines a convex set(sub-level set is a
convex set).

Example 9.8. Consider the function F0(x) = log x defined on R++.
We can show that, the sub-level sets of F0(x) are convex sets, so it

is quasi-convex; the super-level sets of F0(x) are convex sets, so it is
also quasi-concave.

Therefore, we call the function F0(x) = log x is quasi-linear.

Example 9.9. Consider the function F0(x) = P(x)
Q(x) , where P(x) is

convex and non-negative(to make sure t ≥ 0), Q(x) is concave and
dom F0 = {x|Q(x) > 0}.

So the sub-level set of this function can be expressed as

{x|F0(x) ≤ t} = {x| P(x)
Q(x)

≤ t}

= {x|P(x) ≤ tQ(x)}
= {x|P(x)− tQ(x) ≤ 0}

which is a convex set, since P(x) and −Q(x) are convex functions(so
P(x)− tQ(x) is convex as well), t ≥ 0 and the set is the pre-image of a
convex set under a convex function.

Hence, the function F0(x) = P(x)
Q(x) is quasi-convex since all its

sub-level sets are convex sets.
Let’s consider the special case for this kind of functions by setting

F0(x) = aT x+b
cT x+d with dom F0 = {x | cTx + d > 0}.

We can show that(by similar approach above), the sub-level sets
and super-level sets are convex sets, and thus F0(x) = aT x+b

cT x+d is quasi-
linear(both quasi-convex and quasi-concave).

Important note:
(1) Quasi-convex optimization problems may have local optimum

that are NOT global optimum (differ from the convex optimization
problems).

Convex optimization problem with generalized inequality constraints

Convex optimization problem with generalized inequality constraints
is an useful generalized version of convex optimization problem. By

122 course notes: optimization theory and algorithms

using the generalized inequalities in the constraints, the problem is
formulated as

min
x

F0(x)

s.t. Fi(x) ≤ki
0 i = 1, ..., m

hi(x) = 0 i = 1, ..., m

where F0 : Rn → R is convex, Fi : Rn → Rl is "ki-convex" and ki are
cones. Recall a bit about the ki-convex, which means ∀λ ∈ [0, 1] we
have

Fi(λx + (1− λ)y) ≤ki
λFi(x) + (1− λ)Fi(y)

Notice that, many of the results for ordinary convex optimization
problems hold for problems with generalized inequalities. Some
examples are:

(1) The feasible set, any sub-level set, and the optimal set are
convex.

(2) Any point that is locally optimal for the problem is globally
optimal.

(3) The optimality condition for differentiable F0 in ordinary
convex optimization problems still holds in this problem, without
any change.

Semi-definite program(SDP)

When above cone k is Sn
+, the cone of PSD n by n matrices, a special

case of convex optimization problem with generalized inequality
constraints is, the Semi-definite program(SDP) problem,

min
x

cTx

s.t. A0 + A1x1 + · · ·+ Anxn ≤ 0

Fx = g

where the inequality constraint is defined by a linear matrix inequity
(LMI), Ai ∈ Sn, and −(A0 + A1x1 + · · ·+ Anxn) ∈ Sn

+. Note that here
≥ is understood as ≥k, and thus for some symmetry matrices Z ≥ 0
means that Z is PSD. We will return to SDP later in this chapter and
have more discussion.

Second-Order Cone Program (SOCPs)

A SOCP problem is formulated as

min FTx

s.t. ‖Aix + bi‖2 ≤ cT
i x + di i = 1, ..., m

Fx ≤ g

convex optimization 123

where Ai ∈ Rni×n, x ∈ Rn, bi ∈ Rni , F ∈ Rp×n and g ∈ Rp.
Norm cone:

C = {(x, t) ∈ Rn+1|‖x‖ ≤ t} ⊆ Rn+1

• First fix t = t0, Ct0 = {(x, t0)|‖x‖ ≤ t0}, "fill-in" slice

• Next fix x = x0, Cx0 = {(x0, t)|‖x0‖ ≤ t}
→ Fix point in x ∈ Rn to x = x0 and "Fill up".

Proof. We first prove that the set C is a Cone, and then prove it is a
convex cone on the second part.

1. Pick any (x0, t0) ∈ C, we show that for (θx0, θt0) ∈ C and ∀θ ∈ R+,
we have

‖θx0‖ = |θ|‖x0‖ = θ‖x0‖ ≤ θt0

Therefore, C is a cone.

2. Pick (x0, t0) ∈ C and (y0, s0) ∈ C, we show that the point

(θx0 + (1− θ)y0, θt0 + (1− θ)s0) ∈ C, ∀0 ≤ θ ≤ 1

That is,

‖θx0 + (1− θ)y0‖ ≤ ‖θx0‖+ ‖(1− θ)y0‖
= |θ|‖x0‖+ |(1− θ)|‖y0‖
= θ‖x0‖+ (1− θ)‖y0‖
≤ θt0 + (1− θ)s0

Therefore the set C = {(x, t)|‖x‖2 ≤ t} is convex, and thus it is a
convex cone.

Example 9.10. Consider following affine map:

Fi(x) =

[
Aix + bi

cT
i x + di

]
∈ Rn+1

For i-th constraint, we want to have ‖Aix + bi‖ ≤ cT
i x + di, and this is

equivalent to require

{x|Fi(x) ∈ Cn+1} = F−1
i (Cn+1)

Remarks:

1. If all Ai = 0, then we get an general LP;

2. If ci = 0, then we get a QCQP (which is obtained by squaring each
of the constraints);

3. The constraint is a second-order cone constraint, since we use l2
norm for this cone.

124 course notes: optimization theory and algorithms

Robust Linear Programs

We consider a linear program in inequality form,

min cTx

s.t. aT
i x ≤ bi i = 1, · · · , m

in which there is some uncertainty or variation in the parameters c,
ai, bi. To simplify the exposition we assume that c and bi are fixed,
and that ai are the parameters with uncertainty.

There are two versions for the robustness of uncertainty in ai, that
is, (1) worst-case (2)statistical approach

(1) Worst Case: Assume ai are known to lie in given ellipsoids.
In this case, we know that

ai ∈ ξi = {a|a = āi + Piu, ‖u‖ ≤ 1}

where Pi ∈ Rn×n (If Pi is singular we obtain ‘flat’ ellipsoids, of
dimension rank Pi; Pi = 0 means that ai is known perfectly).

Hence, the robust linear program problem is formulated as

min cTx

s.t. aT
i x ≤ bi ∀ai ∈ ξi i = 1, · · · , m

Notice that the constraint of above formulation can be expressed
as

(āi + Piu)Tx ≤ bi and ‖ui‖ ≤ 1, ∀i = 1, · · · , m

Or equivalently,

sup
‖ui‖≤1

(āi + Piu)Tx ≤ bi, ∀i = 1, · · · , m

Furthermore, this constraint can be expressed as a second order cone
constraint, since

(āi + Piu)Tx = āi
Tx + uT PT

i x

≤ āi
Tx + (

PT
i x

‖PT
i x‖

)T PT
i x

= āi
Tx +

xT PiPT
i x

‖PT
i x‖2

= āi
Tx + ‖PT

i x‖2

so this robust LP can be expressed as the SOCP formulated as

min cTx

s.t. āi
T + ‖PT

i x‖2 ≤ bi, ∀i = 1, · · · , m

convex optimization 125

Note that the additional norm terms act as regularization terms;
they prevent x from being large in directions with considerable
uncertainty in the parameters ai.

(2) Statistical approach: Assume that ai are independent Gaussian
random vectors.

In this case, we assume that ai are independent Gaussian random
vectors such that ai ∼ N(āi, Σi).

Recall a little bit regarding the statistics, since each component ai

are independent, we could consider the mean and variance for the
random variables aT

i x− bi respectively,
The mean is given by

E[aT
i x− bi] = āi

Tx− bi = µi

The variance is given by

E[((aT
i x− bi)− (āi

Tx− bi))
2] = E[((ai − āi)

Tx)2]

= E[xT(ai − āi)(ai − āi)
Tx]

= xTE[(ai − āi)(ai − āi)
T]x

= xTΣix

= σ2

= xTΣ
1
2
i Σ

1
2
i x

= ‖Σ
1
2
i x‖2

2

Since the constraints involve randomness, we would like to con-
sider the probability such that the constraint holds, which is given
by

P[aT
i x ≤ bi] = Φ

(
bi − āi

Tx
σi

)

= Φ

 bi − āi
Tx

‖Σ
1
2
i x‖2


Suppose now we require that each constraint should hold with a

probability exceeding η, that is,

P[aT
i x ≤ bi] ≥ η

⇔Φ(
bi − āi

Tx
σi

) ≥ η

⇔ bi − āi
Tx

σi
≥ Φ−1(η)

By above argument, we have the problem formulated as

min cTx

s.t. P[aT
i x ≤ bi] ≥ η, ∀i = 1, · · · , m

126 course notes: optimization theory and algorithms

and it turns out(we have showed this fact above) that, this is equiva-
lent to a SOCP problem as the following

min cTx

s.t. bi − āi
Tx ≥ Φ−1(η)‖Σ

1
2
i x‖2, ∀i = 1, · · · , m

Geometric Program(GP)

Before introducing GP, we give some definitions first,

• "Monomial": h(x) = cxα1
1 xα2

2 ...xαn
n , c > 0, αi ∈ R, domh = (x|xi >

0 ∀i ∈ 1...n)

• Posynomial: F(x) = ∑k
k=1 ckxα1k

1 xα2k
2 ...xαnk

n (sum of monomials)

→ note closed under addition, multiplication, non-negative scal-
ing.

With these definitions in mind, a Geometric program problem is
formulated as

min F0(x)

s.t. Fi(x) ≤ 1, i = 1, · · · , m

hi(x) = 1, i = 1, · · · , p

where x ∈ Rn, F0, F1, · · · , Fm are posynomials, h0, h1, · · · , hm are
monomials.

Geometric programs are not (in general) convex optimization prob-
lems, but they can be transformed to convex problems by a change
of variables and a transformation of the objective and constraint
functions.

To get a GP into convex form, we set yi = logxi, so xi = eyi (recall
xi > 0). Hence, we have

Transformation of monomials:

h(x1, x2, · · · , xm) = cxα1
1 xα2

2 · · · x
αn
n

⇔ log h(x1, x2, · · · , xm) = log c + α1 log x1 + α2 log x2 + · · ·+ αn log xn

⇔ log h(ey1 , ey2 , · · · , eym) = log c + α1y1 + α2y2 + · · ·+ αnyn

and this an affine function of yi, and thus it is convex.

convex optimization 127

Transformation of posynomials:

F(x1, · · · , xn) =
k

∑
i=1

ckxα1k
1 xα2k

2 · · · x
αnk
n

⇔ log F(ey1 , ey2 , · · · , eyn) = log(
k

∑
k=1

elog ck eα1ky1 · · · eαnkyn)

⇔ log F(ey1 , ey2 , · · · , eyn) = log(
k

∑
k=1

eα1ky1+···+αnkyn+log ck)

and we could show this is also a convex function of yi.
With above transformations, we have the geometric program in

convex form,

min log F0(ey1 , ey2 , · · · , eyn)

s.t. log Fi(ey1 , ey2 , · · · , eyn) ≤ log(1) = 0, ∀i = 1, · · · , m

log hi(ey1 , ey2 , · · · , eyn) = 0, ∀i = 1, · · · , q

Note that:
(1) To distinguish the GP from the original formulation and this

convex one, we refer to the original as a geometric program in posyn-
omial form, and the one after transformation as the geometric pro-
gram in convex form.

(2) If the posynomial objective and constraint functions all have
only one term, i.e., are monomials, then the convex form geometric
program reduces to a (general) linear program.

Semi-definite Programs(SDPs)

Recall that, a SDP is formulated as

min cTx

s.t. F0 + x1F1 + x2F2 + ... + xnFn ≤ 0

Gx = h

where F0, F1, · · · , Fn ∈ Sm, and inequality constraint here is a linear
matrix inequality.

We show that, the inequality constraint above indeed defines a
convex set, and more precisely, is a PSD cone. Since

F(x) := F0 + x1F1 + x2F2 + · · ·+ xnFn ≤ 0⇔ −F(x) ≥ 0

so −F(x) ∈ Sm
+, and thus {x| − F(x) ∈ Sn

+} is a convex set.
Alternatively, we could also consider the standard form of a SDP:

min trace(CZ)

s.t. trace(AiZ) = bi, i = 1, · · · , m

Z ≥ 0

128 course notes: optimization theory and algorithms

To obtain the above standard form, similar with what we did in LP,
we

(1) Introduce slack variables(variables that are non-negative) into
inequality constraints and then obtain equality constraints;

(2) Decompose xi by xi = x+i − x−i , x+i ≥ 0, x−i ≥ 0.

Relaxation of homogeneous QCQP

First, recall that a QCQP problem is formulated as

min
1
2

xT P0x + qT
0 x + r0

s.t.
1
2

xT Pix + qT
i x + ri ≤ 0, i = 1, ..., m

Fx = g

Notice that,

• The QCQP is homogeneous if qi = 0, ∀i ∈ {0, 1, ...m};

• The QCQP is convex if all Pi are PSD;

• The QCQP is non-convex if some Pi are not PSD, or if we replace
the inequality with a equality.

Now, lets consider the homogeneous QCQP with the following
formulation

min xTCx

s.t. xT Fix ≤ gi

xT Hix = li

which is not necessary to be convex optimization problem.
Notice that

xTCx = trace(xTCx) = trace(CxxT) = trace(CX)

where we let X := xxT , rank(X) = 1, X ≥ 0.
So, the above homogeneous QCQP can also be written as:

min trace(CX)

s.t. trace(FiX) ≤ gi, i = 1, · · · , m

trace(HiX) = li, i = 1, · · · , p

rank(X) = 1

X ≥ 0

convex optimization 129

Relaxation: Drop a constraint that is hard to deal with and thus we
could solve an easier problem.
→ min is the lower bound to original problem’s optimum value.
→ Maybe (if relaxation is good) you can figure out an X that is a

good enough solution to original:

X∗relaxed =
n

∑
i=1

vivT
i λi ⇒ λ1v1vT

1

Example 9.11. Two-way partitioning problem
Suppose now we have n items, and we want to partition these

n items into 2 different sets while minimizing the total cost of the
whole partition procedure. We let x ∈ Rn be a partition for these n
items, in particular, each xi = 1or− 1 for i = 1, · · · , n, where 1 and −1
represent 2 different sets.

Let Wij be the cost of placing the items i and j in the same set, and
−Wij be the cost of having i and j in different sets. So we define a
matrix W that contains these cost.

With this problem setting, this question can be formulated as a
non convex optimization problem as follows

min xTWx

s.t. xi ∈ {1,−1}, ∀i = 1, · · · , n

Equivalently, we have

min xTWx

s.t. x2
i = 1, ∀i = 1, · · · , n

Notice that

xTWx =
n

∑
i=1

Wii(xi)
2 + ∑

i 6=j
(Wij + Wji)xixj

and thus the original formulation can be expressed as

min trace(WX)

s.t. Xii = 1, i = 1, · · · , n

X ≥ 0

rank(X) = 1

By relaxation, we drop the constraint rank(X) = 1 so that we have a
SDP problem.

10
Duality

In optimization theory, duality or the duality principle is the prin-
ciple that optimization problems may be viewed from either of two
perspectives, that is, the primal problem or the dual problem.

Let’s consider the primal problem formulated as follows,

min F0(x)

s.t. Fi(x) ≤ 0, i = 1, ..., m

hi(x) = 0, i = 1, ..., p

Note that we do not have any assumptions of convexity here.
So the feasible set for this problem is

D = (∩m
i=1dom Fi) ∩ (∩p

i=1dom hi)

and the optimal value is p∗, optimal variable is x∗.

Definition 10.1 (The Lagrangian Function). We define the Lagrangian
function as follows,

L(x, λ, ν) := F0(x) +
m

∑
i=1

λiFi(x) +
p

∑
i=1

νihi(x)

where

λ =


λ1

λ2
...

λm

 , ν =


ν1

ν2
...

νp


The pairs (λ, ν) are called the "Lagrange multipliers" or "dual

variables", and the domain for the Lagrangian function is given by

dom L = D×Rm ×Rp

Definition 10.2 (The "dual" function). The dual function g(·, ·) is
defined as

g(λ, ν) = min
x∈D

L(x, λ, ν)

Note: removes dependence on x.

132 course notes: optimization theory and algorithms

Definition 10.3. The dual optimization problem is formulated as

max
λ,ν

g(λ, ν)

s.t. λ ≥ 0

Note: νi are unconstrained, and we denote the optimal value for
dual problem as d∗, optimal dual variables as λ∗ and ν∗.

Duality theory

The duality theory says that, for most convex optimization problem,
we have d∗ = p∗, that is, the primal optimum equals to the dual
optimum.

Recall the problem formulations previously, the primal optimiza-
tion problem is formulated as

min F0(x)

s.t. Fi(x) ≤ 0, i = 1, ..., m

hi(x) = 0, i = 1, ..., p

The Lagrange function is given by

L(x, λ, ν) = F0(x) +
m

∑
i=1

λiFi(x) +
p

∑
i=1

νihi(x)

The dual function is given by

g(λ, ν) = min
x∈D

L(x, λ, ν)

So the dual optimization problem is formulated as

max g(λ, ν)

s.t. λ ≥ 0

A few observations

1. g(λ, ν) is concave in (λ, ν) for all F0, ..., Fm, h0, ..., hp.

Proof. Recall that

g(λ, ν) = min
x∈D

[F0(x) +
m

∑
i=1

λiFi(x) +
p

∑
i=1

νihi(x)]

First, notice that Lagrange function is an affine function in (λ, ν)

so it is concave(of course it is convex at the same time). Secondly,
note that the dual function is a pointwise infimum of a family of
affine functions in (λ, ν), and thus g(λ, ν) is concave.

duality 133

2. For any primal feasible x (i.e., Fi(x) ≤ 0, ∀i = [m], hi(x) = 0, ∀i =
[p] and dual feasible (λ, ν) (i.e., λ ≥ 0), we have

g(λ, ν) ≤ F0(x)

for any tuple (x, λ, ν) ∈ C ×Rm
+ ×Rp, where C is the feasible set of

the primal problem (contains all feasible x).

Proof. Notice that, we have

F0(x) ≥ F0(x) +
m

∑
i=1

λiFi(x) +
p

∑
i=1

νihi(x)

≥ min
x∈D

[F0(x) +
m

∑
i=1

λiFi(x) +
p

∑
i=1

νihi(x)]

= g(λ, ν)

where the first summation on r.h.s is negative due to λi ≥ 0
and Fi(x) ≤ 0, and the second summation equals to zero due to
hi(x) = 0.

Thus the desired result can be obtained by the definition of min
function and dual function.

The point of greatest interest is x∗, where p∗ = F0(x∗).

Plug in to the above inequality, for all dual feasible (λ, ν) (i.e., for
λ ≥ 0), we have

p∗ = F0(x∗) ≥ g(λ, ν)

Optimize over (λ, ν) where λ ≥ 0 in order to maintain dual
feasibility, we can get the greatest lower bound,

p∗ = F0(x∗) ≥ g(λ∗, ν∗) = d∗

That is, we have the so called weak duality, p∗ ≥ d∗.

Furthermore, we refer to the difference p∗ − d∗ as the optimal
duality gap.

3. For convex primal optimization problems, (i.e., Fi(x) are convex
and hi(x) are affine) and under certain conditions called "con-
straint qualification" (i.e., not all constraint sets allowed), the
strong duality holds, i.e.,

p∗ = d∗

and thus the optimal duality gap is zero.

There are many types of constraint qualification, and we will
introduce a simple one called Slater’s condition in the next section.

134 course notes: optimization theory and algorithms

Slater Conditions

Definition 10.4 (Slater conditions). Consider a primal problem with
a set of constraints Fi(x) ≤ 0, i = [m] and Ax = b, it is said to be
satisfied the Slater’s conditions if there exists an x ∈ relint D such
that

1. Fi(x) < 0, ∀i = [m]

2. Ax = b

Furthermore, if some of the inequality constraints are defined by
affine functions, this conditions can be weaken a bit. Suppose Fi are
affine for i = 1, ..., k, where k < m, then the Slater conditions requires
that there exists an x ∈ relint D such that

1. Fi(x) ≤ 0, ∀i = 1, ..., k

2. Fi(x) < 0, ∀i = k + 1, ..., m.

3. Ax = b

Example 10.5. Convex problem that doesn’t satisfy Slater’s:

[
(x1 − 1) x2

] [1 0
0 1

] [
x1 − 1

x2

]
≤ 1

[
(x1 + 2) x2

] [1 0
0 0

] [
x1 + 2

x2

]
≤ y

Feasible set is (x1, x2) = {(0, 0)}

Theorem 10.6. If the primal optimization problem is convex and satisfies
Slater’s conditions, then p∗ = d∗, the strong duality holds.

Proof. We propose a sketch proof for the case m = 1, i.e., 1 inequality
constraint and there is no equality constraint so p = 0.

Given the basic setting for this case, the primal problem is given
by

min F0(x)

s.t. F1(x) ≤ 0

and we let p∗ be the optimal value of the primal problem.
The Lagrange function is:

L(x, λ) = F0(x) + λF1(x)

The dual function is g(λ) = minx∈D L(x, λ) = minx F0(x) + λF1(x)

duality 135

The dual optimal problem is formulated as

max g(λ)

s.t. λ ≥ 0

and we let d∗ be the optimal value of the dual problem.
To start, we define a set

G = {(F1(x), F0(x))|x ∈ D = dom F1 ∩ dom F0}
= ∪x∈D{(F1(x), F0(x))}

and also define the set A

A = G + R+ ×R+

= {(s, t)|F1(x) ≤ s, F0(x) ≤ t, x ∈ D}
= ∪x∈D{(s, t)|F1(x) ≤ s, F0(x) ≤ t}

A few observations regarding these two sets:

• The set G contains all information about primal problem.

• The set A contains all points "above" and to "right" of each point in
G.

• Each such point(above and to right) is less interesting than the
point in G due to

(1) Perhaps higher cost

(2) Perhaps more resources

The boundary of A is specified by the function:

p(u) =min F0(x)

s.t. F1(x) ≤ u

(p is the boundary, A lies above the boundary)
A few observations regarding p(u):
(1) p∗ = p(0).
(2) p is non-increasing in u
(3) p is convex in u
(4) A = epi p

proof of (1). When u = 0, we just get the original primal problem so
certainly p∗ = p(0).

proof of (2). As u gets larger, feasible set of the p(u) optimization gets
larger so objective cannot increase→ therefore non-increasing.

136 course notes: optimization theory and algorithms

proof of (3). We want to prove the convexity of the problem

p(u) =min F0(x)

s.t. F1(x) ≤ u

and this means that we need to show ∀u1, u2 ∈ dom p, ∀λ ∈ [0, 1],
we have

p(λu1 + (1− λ)u2) ≤ λp(u1) + (1− λ)p(u2).

Consider i = 1, 2, let

xi = arg min F0(x)

s.t. F1(x) ≤ ui

That is, F0(x1) = p(u1) and F0(x2) = p(u2).
Let x̃ = λx1 + (1− λ)x2, and note that

x1 ∈ dom F1 ∩ dom F0 ∩ {x|F1(x) ≤ u1}

x2 ∈ dom F1 ∩ dom F0 ∩ {x|F1(x) ≤ u2}

So we can write

F1(x̃) = F1(λx1 + (1− λ)x2)

≤ λF1(x1) + (1− λ)F1(x2)

≤ λu1 + (1− λ)u2

where the first equality is due to x̃ ∈ dom F1, the first inequality is
due to convexity of F1, and the second inequality is due to F1(xi) ≤
ui, i = 1, 2.

Hence,

x̃ ∈ dom F1 ∩ dom F0 ∩ {x|F1(x) ≤ λu1 + (1− λ)u2}

Therefore, x̃ is a feasible point for the optimization problem p(λu1 +

(1− λ)u2)

Think about the trade-off between F1(x) and F0(x) in a slightly
different way:

min
(s,t)

λs + t

where (s, t) ∈ A

which is equivalent to

min
(s,t)

[
λ 1

] [s
t

]
where (s, t) ∈ A

duality 137

For a given λ, the optimum is attained by some point (s∗, t∗) on
boundary of A. Point on boundary is a function of λ, so we can write

(s∗(λ), t∗(λ)) = (F1(x∗(λ)), F0(x∗(λ)))

Consider any point (s, t) ∈ A:

[
λ 1

] [F1(x∗(λ))
F0(x∗(λ))

]
≤
[
λ 1

] [s
t

]
(∗)

⇔0 ≤
[
λ 1

] ([s
t

]
−
[

F1(x∗(λ))
F0(x∗(λ))

])

1. This optimization yields a tangent plane, "supporting hyperplane"

2. In this 2− D picture, supporting hyper-plane is a line, change ” ≤ ”
in (∗) to ” = ” get a line

c = λs + t

where c is the l.h.s of (∗).

Rearrange yields t = c− λs.

This is the problem we just talked about:

min
(s,t)∈A

λs + t = λs∗ + t∗

= λF1(x∗(λ)) + F0(x∗(λ))

= min
x∈D

[λF1(x) + F0(x)]

= g(λ)

so it is the dual function.
Put these pieces all together:
(1) The dual function g(λ) specifies the y−intercept of the tangent

line of slope −λ.
(2) Last time proved g(λ) is a lower bound on p∗ as long as λ are

dual-feasible (i.e., λ ≥ 0).
(3) The y−intercept is a lower bound on p∗, i.e., c ≤ p∗.
Get best lower bound by maximizing g(λ) over λ ≥ 0, that is, solve

the following optimization problem

max g(λ)

s.t. λ ≥ 0

which exactly takes the form of dual problem.

138 course notes: optimization theory and algorithms

"Pricing" Interpretation

There is an interesting and intuitive interpretation for the duality
theory called the pricing interpretation. Suppose the variable x
denotes how an company operates(i.e., "policy") and F0(x) denotes
the cost of operating at policy x. Each constraint denotes representing
some limit, such as a limit on resources, labor, etc.

To optimize policy(i.e., x∗) with these constraints can be found by
solving the problem(consider this is the primal problem)

min F0(x)

s.t. Fi(x) ≤ 0, i = 1, ..., m

hi(x) = 0, i = 1, ..., p

In the next step, we reformulate this problem as an unconstrained
problem by introducing I and Ĩ, which are given by

I(x) =

{
0, x ≤ 0

∞, x > 0
(10.1)

Ĩ(x) =

{
0, x = 0

∞, else
(10.2)

So the primal problem can be reformulated as

min
x

F0(x) +
m

∑
i=1

I(Fi(x)) +
p

∑
i=1

Ĩ(hi(x)) (∗)

This unconstrained problem is the same as primal one, but with
"hard" penalties introducing by I and Ĩ.

Now, let’s consider the case that are more realistic. Suppose the
company is allowed to break the limit on their resources by paying
an additional cost which is linear in the amount of violation, mea-
sured by Fi and hi. More precisely, the additional payment made
by the company for the i-th constraint is λiFi(x), and payments are
also made to the company for the constraints that are not right(i.e.,
Fi(x) < 0), the λiFi(x) represents a payment received by the company.

So λi is interpreted as the "price" for violating constraint Fi, and
similarly we have µi as the "price" for violating constraint hi.

Under this relaxed setting (i.e., not all constraints are satisfied), the
problem can be formulated as

F0(x) +
m

∑
i=1

λiFi(x) +
p

∑
i=1

νihi(x)

It’s obviously that such formulation takes the from of Lagrange
function. If we minimize this function to obtain the minimal total

duality 139

cost and then maximize over λ and ν, that is

max
λ,ν

min
x

F0(x) +
m

∑
i=1

λiFi(x) +
p

∑
i=1

νihi(x)

where we obtain the optimal cost to the company under the least
favorable set of prices. We use d∗ to denote this optimal value, and
it readily follows that we have an interpretation for the weak duality,
i.e.,

d∗ ≤ p∗

Furthermore, if strong duality holds, the problem (∗) (i.e., problem
that is equivalent to the primal problem) becomes

(∗) = max
λ,ν,λ≥0

[min
x

F0(x) +
m

∑
i=1

λiFi(x) +
p

∑
i=1

νihi(x)]

= max
λ,ν

g(λ, ν) where λ ≥ 0

Implication: Adjust the prices λ, ν so that the solution to relaxed
problem matches the solution to the primal problem.

Sensitivity Analysis

→ At dual optimum slope of tangent is −λ∗

→ If change constraint by ε, optimum value will change by some-
thing like (−ελ∗).

We consider the following perturbed version of the original opti-
mization problem (unperturbed), says the perpetuated problem, as
follows

p∗(u, v) = min F0(x)

s.t. Fi(x) ≤ ui, i = 1, ..., m

hi(x) = vi, i = 1, ..., p

where when u = v = 0 is exactly the same as the unperturbed one.
→ ui < 0 "tighten" constraint, ui > 0 loosen constraint, vi 6= 0

change set-point.
→ Same as p(u) in last lecture.
→ Note p∗(0, 0) = p∗ is the optimal value of unperturbed prob-

lem.
→ relate p∗(u, v) to p∗(0, 0)

• Let (λ∗, ν∗) be optimal dual variables for unperturbed problem

• Consider a convex optimization problem satisfying Slater’s condi-

140 course notes: optimization theory and algorithms

tions, i.e., strong duality holds,

p∗(0, 0) = g(λ∗, ν∗)

= min
x∈D

L(x, λ∗, ν∗)

≤ F0(x) +
m

∑
i=1

λ∗i Fi(x) +
p

∑
i=1

ν∗i hi(x)

≤ F0(x) +
m

∑
i=1

λ∗i ui +
p

∑
i=1

ν∗i vi

= F0(x) + (λ∗)Tu + (ν∗)Tv

Our focus in on x ∈ D s.t. x is optimal for perturbed problem
i.e. F0(x) = p∗(u, v)
⇒ p∗(u, v) ≥ p∗(0, 0)− (λ∗)Tu− (ν∗)Tv

1. E.g. If λi >> 0 and tighten constraint Fi slightly so that Fi(x) ≤
−ε < 0

p∗(u, v) ≥ p∗(0, 0)− (λ∗)Tu− (ν∗)Tv

2. Note not symmetric in general, big relaxation in constraint doesn’t
necessary mean big drop in cost.

3. If p(u, v) is differentiable, then have symmetry for small perturba-
tions.

Lagrange Method

In order to solve the following primal problem,

min
x

F0(x)

s.t. Fi(x) ≤ 0, i = 1, ..., m

we propose the Lagrange method as follows:
Step 1. First write Lagrangian: L(x, λ) = F0(x) + ∑m

i=1 λiFi(x).
Step 2. Solve for dual function g(λ) = minx∈D L(x, λ), where D is

the primal feasible set.
Step 3. Find λ∗ = arg max g(λ), s.t. λ ≥ 0.
Step 4. Recover the primal optimal x∗ by solving arg min L(x, λ∗),

that is, solve

arg min F0(x) +
m

∑
i=1

λ∗i Fi(x).

Remarks:

• It is a nice approach if the problem has a nice structure, in particu-
lar if it is easy to solve for (λ∗, ν∗) analytically or numerically.

duality 141

• Even if the dual optimum (λ∗, ν∗) is unique, the primal optimum
x∗ that minimized L(x, λ∗, ν∗) may not be unique.

Example 10.7 (Lagrange Duality for LS problems). Consider the
problem

min
x
‖x‖2

2

s.t. Ax = b

where x ∈ Rn, A ∈ Rp×n, rank(A) = p < n.
Recall the chapter least square, this an under determined LS

problem, and the optimal solution is given by

x∗ = AT(AAT)−1b

To verify that this solution is coincide with the one obtained by
Lagrange’s method, we proceed following procedure to solve this
question.

(1) Form the Lagrange function:

L(x, ν) = xTx + νT(Ax− b)

(2) Solve for the dual function g(λ) = minx L(x, ν):
Notice that Lagrange function here is a convex quadratic function

of x(you may verify this), so simply by the first-order condition, we
have

∂

∂x
L(x, ν) = 2x + ATν = 0⇒ x∗(ν) = −1

2
ATν

(3) Find the dual optimum ν∗:
Now, we have dual problem as

max
ν

g(ν) = max
ν

L(x∗(ν), ν)

= max
ν

[x∗(ν)Tx∗(ν) + νT(Ax∗(ν)− b)]

= max
ν

[
1
4

νT AATν + νT(A(−1
2

ATν)− b)]

= max
ν

[
1
4

νT AATν− 1
2

νT AATν− νTb]

= max
ν

[−1
4

νT AATν− νTb]

Note that g(ν) is a concave quadratic function of ν, and therefore
utilize the first-order condition we yields

∂

∂ν
(−1

4
νT AATν− νTb) = 0

⇔− 1
4

2AATν− b = 0

⇔(AAT)ν = −2b

⇔ν∗ = −2(AAT)−1b

142 course notes: optimization theory and algorithms

(4) Substitute into x∗(ν) to get the primal optimum:

x∗(ν∗) = −1
2

ATv∗

= −1
2

AT(−2(AAT)−1b)

= AT(AAT)−1b

Hence, the optimal solution is coincide with our previous result
in LS chapter, that is, for under-determined LS problem we have
x∗ = AT(AAT)−1b.

Furthermore, at step (3), we have the problem

max
ν

[−1
4

νT AATν− νTb]

which is equivalent to

min
ν

[
1
4

νT AATν + νTb]

and it turns out, this minimization problem is equivalent to the
following norm minimization problem,

min
ν
‖1

2
ATν + x0‖2

2

s.t. Ax0 = b

since they enjoy the same optimal solution x∗, and the difference of
the optimal value is just a scalar.

More precisely, that’s because

‖1
2

ATν + x0‖2
2 = (

1
2

ATν + x0)
T(

1
2

ATν + x0)

=
1
4

νT AATν + 2
1
4

νT Ax0 + xT
0 x0

=
1
4

νT AATν + νTb + xT
0 x0

A final interpretation

Consider the problem

min F0(x)

s.t. Fi(x) ≤ 0 i = 1, ..., m

We want connect to the problems with multiple (vector) objective
(F0, F1, · · · , Fm), and one approach is to "scalarize" the objective as

F0(x) + λ1F1(x) + · · ·+ λmFm(x) = F0(x) +
m

∑
i=1

λiFi(x)

duality 143

Dual of LPs

Consider an LP problem as the primal problem, which is given by

min cTx

s.t. Ax ≤ b

where the constraint is the matrix form of aT
i x ≤ bi, for i = 1, ..., m.

The Lagrange function is

L(x, λ) = cTx +
m

∑
i=1

λi(aT
i x− bi)

= cTx +
[
λ1 λ2 · · · λm

] 
aT

i x− b1
...

aT
mx− bm


= cTx + λT(Ax− b)

= −λTb + (cT + λT A)x

The dual function is

g(λ) = min
x

L(x, λ)

= min
x

[−λTb + (cT + λT A)x]

=

{
−λTb if cT + λT A = 0

−∞ if cT + λT A 6= 0

The dual optimization problem is formulated as

max g(λ)

s.t. λ ≥ 0

As we showed above, the dual problem is feasible iff cT + λT A = 0,
so in order to maintain the feasibility we may consider the problem
with the form

max g(λ)

s.t. λ ≥ 0

cT + λT A = 0

which is equivalent to

max − λTb

s.t. λ ≥ 0

cT + λT A = 0

Observations:

144 course notes: optimization theory and algorithms

• The dual of an LP problem is still an LP problem.

• It maybe not clear from the form, but we have strong duality holds,
so p∗ = d∗.

Primal Dual
number of variables n m

number of constraints m n + m

To verify above results, we show that, for this LP case, the dual of
the dual problem is just the given primal problem (i.e., we retrieve
the original primal problem).

The dual optimization problem we obtain above can be expressed
as follows

min bTλ

s.t. − λ ≤ 0

ATλ = −c

which has the same optimal solution.
Let zi be the inequalities multipliers, and yi be the equality multi-

pliers.
The Lagrange function is

L(λ, x, y) = bTλ + zT(−λ) + yT(ATλ + c)

The dual function is

g(z, y) = min
λ

L(λ, z, y)

= min
λ

yTc + (bT − zT + yT AT)λ

=

{
yTc if bT − zT + yT AT = 0

−∞ else

The dual problem is

max g(z, y)

s.t. z ≥ 0

To main the feasibility, we may have the form

min yTc

s.t. bT − zT + yT AT = 0

z ≥ 0

Notice that, the constraints

bT − zT + yT AT = 0

z ≥ 0

duality 145

is equivalent to
bT + yT AT ≥ 0

by a simple rearrangement and substitution.
Thus, this dual problem can also be written as:

max yTc

s.t. b + Ay ≥ 0

⇔

max (−x)Tc

s.t. b + A(−x) ≥ 0

⇒

min cTx

s.t. Ax ≤ b

Note that the second form is just utilizing the change of variable
and let −x = y, and the third one has exactly the same optimal so-
lution(but not optimal value), and the optimal value have a opposite
sign.

By this argument, we show that, the dual of the dual problem is
just the original LP problem, it implies the strong duality holds by
the validation of weak duality(i.e., use weak duality for twice), since
the two inequality holds only if the equality holds.

Karush-Kuhn-Tucker(KKT) conditions

Consider the optimization problem for which primal and dual opti-
mal values are obtained and p∗ = d∗ (i.e., strong duality holds).

Let x∗ be the primal optimum, and (λ∗, ν∗) be the dual optimum.
Consider the primal problem:

max F0(x)

s.t. Fi(x) ≤ 0 i = 1, ..., m

hi(x) = 0 i = 1, ..., p

Note: we have no assumption of convexity for this problem.
The Lagrange function and the dual function are given by

L(x, λ, ν) = F0(x) +
m

∑
i=1

λiFi(x) +
p

∑
i=1

νihi(x)

g(λ, ν) = min
x

L(x, λ, ν)

146 course notes: optimization theory and algorithms

Since strong duality holds at (x∗, λ∗, ν∗),

F0(x∗) = g(λ∗, ν∗)

= min
x

[F0(x) +
m

∑
i=1

λ∗i Fi(x) +
p

∑
i=1

ν∗i hi(x)]

≤ F0(x∗) +
m

∑
i=1

λ∗i Fi(x∗) +
p

∑
i=1

ν∗i hi(x∗)

≤ F0(x∗)

The first inequality is because the primal optimal x∗ must mini-
mize L(x∗, λ∗, ν∗), and the second inequality is due to the negativity
of the second term on r.h.s.

We claim that the second inequity must hold at equality, since
F0(x∗) = F0(x∗), and an interesting result can be derived from this
fact.

Complementary slackness:
The complementary slackness condition

m

∑
i=1

λiFi(x∗) = 0, ∀i ∈ [m]

holds for any primal optimal x∗ and any dual optimal λ∗, when the
strong duality holds.

We can express the complementary slackness condition as
(1) If i-th constraint is "active" (i.e., Fi(x) = 0), then λ∗i = 0 or

λ∗i > 0.
(2) If i-th constraint is "inactive" (i.e., Fi(x) < 0), then λ∗i = 0.
Conversely,
(3) If λ∗i = 0, then Fi(x∗) = 0 or Fi(x∗) < 0.
(4) If λ∗i > 0, then Fi(x∗) = 0.

Recall the pricing interpretation,
→ perturb Fi(x) ≤ 0 to Fi(x) ≤ ε

→ λ∗i = − d
dε p∗(0, 0)

If constraint is "inactive", then there is slack in resource i but since
λ∗i = 0, no gain by having more of that resource.

If constraint is "active", then resource is totally used, so cannot use
more even if you want to.

We can say more if the problem is differentiable, assume that

• Fi(x) and hi(x) are all differentiable.

• Strong convexity holds.

duality 147

Observe that x∗ minimizes L(x, λ∗, ν∗), and since Lagrangian
function is differentiable, we have the first order condition:

∇xL(x, λ∗, ν∗)|x=x∗ = 0

Thus, we have the KKT conditions:

1. ∇xL(x∗, λ∗, ν∗) = ∇F0(x∗) + ∑m
i=1 λ∗i ∇Fi(x∗) + ∑

p
i=1 ν∗i ∇hi(x∗) = 0

2. Fi(x∗) ≤ 0, ∀i = [m], hi(x∗) = 0, ∀i = [p].

3. λ∗i ≥ 0, ∀i = [m].

4. λ∗i Fi(x∗i) = 0, ∀i = [m].

Theorem 10.8. If (x∗, λ∗, ν∗) are primal and dual optimal, for a differ-
entiable problem for which strong duality holds, they must satisfy KKT
conditions. Note that this is necessary but not sufficient.

Theorem 10.9. When the primal problem is convex, the KKT condtions are
also sufficient for the points to be primal and dual optimal with zero duality
gap, that is,

If
(1) Fi and hi are all differentiable, and
(2) Fi are convex functions and hi are affine functions
Then for any points (x̃, λ̃, ν̃) satisfy the KKT conditions, we may have
(1) x̃ is primal optimal, (λ̃, ν̃) is dual optimal, and
(2) Duality gap is zero (i.e., Strong duality holds).

Proof. Let (x̃, λ̃, ν̃) be a point that satisfy the KKT conditions.
Notice that, the Lagrange function

L(x, λ̃, ν̃) = F0(x) +
m

∑
i=1

λ̃iFi(x) +
p

∑
i=1

ν̃ihi(x)

is a convex function in x.
Therefore, if we can find a point of zero-gradient, that is the global

optimum.
The KKT-(1) tells us that , for the point (x̃, λ̃, ν̃) we have

∇xL(x̃, λ̃, ν̃) = 0

Hence, x̃ minimizes L(x, λ̃, ν̃).
So the dual function is given by

g(λ̃, ν̃) = min
x

L(x, λ̃, ν̃)

= L(x̃, λ̃, ν̃)

= F0(x̃) +
m

∑
i=1

λ̃iFi(x̃) +
p

∑
i=1

ν̃ihi(x̃)

= F0(x̃)

148 course notes: optimization theory and algorithms

where the third equality comes from the KKT-(2) and KKT-(4).
Since g(λ̃, ν̃) = F0(x̃), x̃ and (λ̃, ν̃) have zero duality gap so the

strong duality holds, and therefore x̃ is primal optimal and (λ̃, ν̃) is
dual optimal.

So far, we have proposed two theorems regarding KKT conditions.
One is necessary and the other one is sufficient. Certainly it is better
if there is a theorem that is both necessary and sufficient.

To combine the above results such that KKT is necessary and
sufficient, we need the following

(1) Optimization problem that is differentiable so that KKT condi-
tions exist;

(2) Convex optimization problem so that we can apply Theorem
10.9 (sufficiently);

(3) Strong duality holds so that we can apply Theorem 10.8 (neces-
sity).

To summarize, we have the theorem,

Theorem 10.10. If a convex optimization problem with differentiable
objective and constraints functions satisfy Slater’s condition(i.e., strong
duality holds), then the KKT conditions provide necessary and sufficient
conditions for optimality.

Walter-pouring Problem

Given the maximization problem

max
P1,··· ,Pn

n

∑
i=1

log[1 +
Pi
Ni

]

s.t. 0 ≤ Pi, i ∈ [m]
n

∑
i=1

Pi ≤ PT

We convert it to the general form (minimize the objective),

min
P1,··· ,Pn

−
n

∑
i=1

log[1 +
Pi
Ni

]

s.t. 0 ≤ Pi, i ∈ [m]
n

∑
i=1

Pi ≤ PT

The Lagrange function is formulated as

L(P, λ, µ) = −
n

∑
l=1

logl [1 +
Pl
Nl

] + λ(
n

∑
l=1

Pl − PT)−
n

∑
l=1

µl Pl

duality 149

By the KKT condtions, we have

(1)
∂

∂Pi
L(P, λ, µ) = − Ni

Ni + Pi

1
Ni

+ λ− µi = 0⇔ Ni + Pi =
1

λ− µi

(2) Pi ≥ 0, ∀i ∈ [m] and
n

∑
l=1

Pl ≤ PT

(3) λ ≥ 0, µ ≥ 0

(4) λ(
n

∑
l=1

Pl − PT) = 0 and µiPi = 0⇔ if Pi > 0, then µi = 0

To solve this question,

1. First observe that you will use all power since F0 is monotonically
increasing in each Pi, so we have

n

∑
l=1

Pl = PT

2. Look at KKT-(1):

(a) If Pi > 0 then µi = 0 by KKT-(4), and therefore Ni + Pi =
1
λ .

(b) If Pi = 0, by KKT-(3) µi ≥ 0, and therefore Ni =
1

λ−µi
≥ 1

λ .

(c) By KKT-(2), we require Pi ≥ 0, so we conclude that

Pi = max{ 1
λ
− Ni, 0}

Let’s give you PT + ε power, says |u∗| = n∗, and we increase the
power by ε

n∗ to each channel (that is active),
So the change in rate for i-th channel can be computed as

log[1 +
Pi +

ε
n∗

Ni
]− log[1 +

Pi
Ni

] = log[
Ni + Pi +

ε
n∗

Ni + Pi
]

= log[1 +
ε

n∗

Ni + Pi
]

= log[1 +
ε

n∗
1

λ∗
]

= log[1 +
ε

n∗
λ∗]

≈ ελ∗

n∗

Hence, Total change in rate = n∗ ελ∗
n∗ = ελ∗, where λ∗ can be

computed by
∂Fo(x∗)

∂PT
= λ∗

150 course notes: optimization theory and algorithms

Geometric interpretation of KKT

Consider the primal problem

min F0(x)

s.t. Fi(x) ≤ 0 i = 1, ..., m

hi(x) = 0 i = 1, ..., p

which is equivalent to

min F0(x)

s.t. Fi(x) = 0, ∀i ∈ {i|Fi(x∗) = 0}
hi(x) = 0 i = 1, ..., p

Stacking up the constraints, we may expressed this problem with a
linear constraint (in matrix form),

min F0(x)

s.t. Ax = b

Consider the optimum point x∗ and small perturbations about x∗,
i.e., x∗ +4x which perturbations stay feasible (so the point x∗ +4x is
still within feasible set).

By feasibility, we have A(x∗ +4x) = b, and

Ax∗ + A4x = b⇔ A4x = 0⇔ 4x ∈ N(A)

Apply first order condition,

L(x, ν) = F0(x) + νT(Ax− b)

⇔∇xL(x, ν) = ∇F0(x) + ATν = 0

⇔∇F0(x) = −ATν

Because ν is unconstrained, −ATν can by any vector in R(AT).
Put together with the condition for optimality of constrained

problem, a point x∗ ∈ C is optimal iff

〈∇F0(x∗), (y− x∗)〉 ≥ 0, ∀y ∈ C

Since,

∇F0(x∗)T4x ≥ 0, ∀4x ∈ N(A)

⇔ ∇F0(x∗) ⊥ N(A)

⇔ ∇F0(x∗) ∈ N(A)⊥ = R(AT)

duality 151

First-order for general problem

From the first-order condition,

∇xL(x, λ, ν) = ∇F0(x) +
m

∑
i=1

λi∇Fi(x) +
p

∑
i=1

νi∇hi(x) = 0

We have

∇F0(x) =
m

∑
i=1

(−λi)∇Fi(x)−
p

∑
i=1

νi∇hi(x)

Let’s think about the case m = 1 and p = 0, so we have ∇F0(x) =
−λ1∇F1(x).

However, this method not always work since we require the KKT
condition holds, as we show in the following example.

Example 10.11. Consider the optimization problem,

min x1 + x2

s.t. (x1 + 1)2 + x2
2 ≤ 1

(x1 − 2)2 + x2
2 ≤ 4

Note that, this is a convex optimization problem with differen-
tiable objective, and feasible set C = {(0, 0)}, a singleton.

If we compute the gradients for objective and constraints, and
evaluate the gradient at the point {(0, 0)} (since x is only feasible at
{(0, 0)}), we may find that

∇F0(x) =

[
1
1

]

∇F1(x) =

[
2(x1 + 1)

2x2

]
|
x=x∗=

0
0

 =

[
2
0

]

∇F2(x) =

[
2(x1 − 2)

2x2

]
|
x=x∗=

0
0

 =

[
−4
0

]

Apparently, we can not find λ1 and λ2 such that

∇F0(x) = −λ1∇Fi(x)− λ2∇F2(x)

In other words, the first order condition is not applicable here. The
reason for this situation is, the Slater’s condition does not hold for
this problem.

The feasible set here is C = {(0, 0)}, it is a singleton. For any
finite set C ∈ Rn, there is no interior point for such set C, that

152 course notes: optimization theory and algorithms

is, int(C) = ∅, and thus relint(C) = ∅ as well. Recall that, the
Slater’s condition requires there exist a relative interior point, so
the condition fails here, and thus the strong duality and the KKT
condition do not hold.

Extend duality theory to generalized inequality

Recall generalized inequalities are defined with respect to proper
cones. A cone is proper if it is

(1) closed
(2) convex
(3) pointed (if x ∈ k and −x ∈ k, then x = 0)
(4) Solid

As we want similar properties still hold when we extend to gener-
alized inequality defined a proper cone, recall our previous deriva-
tion of weak duality:

g(λ) = min
x

[F0(x) +
m

∑
i=1

λiFi(x)]

≤ F0(x∗) +
m

∑
i=1

λiFi(x∗)

≤ F0(x∗)

To accommodate generalized inequalities, we need to identify
what set dual variables need to be restricted to keep the following
holds (so that the weak duality holds),

〈λ, F(x)〉 ≤ 0, ∀x feasible

Now, we are considering the feasibility inequality constraints are
defined by a cone k, and we say that the dual variable need to be
restricted in the dual cone k∗.

A dual cone k∗ is defined as

k∗ = {y|〈x, y〉 ≥ 0, ∀x ∈ k}

and the dual cone k∗ is always closed and convex, whether the cone k
is convex or not.

Also note that, a cone k is self dual if k∗ = k. For instance, The
non-negative orthant cone (Rm

+), second order cone and PSD cone
(Sm

+) are self dual.
With this definition for dual cone, apparently we could keep

〈λ, F(x)〉 ≤ 0, ∀x feasible

so that the weak duality holds.

duality 153

Example 10.12. Recall the SDP problem,

min cTx

s.t. x1F1 + x2F2 + . . . + xnFn + G ≤k 0

where x ∈ Rn, Fi ∈ Sm, G ∈ Sm, the cone k = Sm
+.

Let z ∈ Sm be the dual variable.
The Lagrangian function given by

L(x, z) = cTx + 〈z, x1F1 + . . . + xnFn + G〉

= cTx +
n

∑
i=1
〈z, xiFi〉+ 〈z, G〉

=
n

∑
i=1

xi(ci + 〈z, Fi〉) + 〈z, G〉

is affine in x.
If you are confused where this inner product comes from, recall

the definition of Frobenius inner product, for any A, B ∈ Rm×n, we
have the inner product,

〈A, B〉F = trace(AT B)

Furthermore, if A, B ∈ Sm, then

〈A, B〉F = trace(AT B) = trace(AB)

and also remind yourself, the trace of a square matrix equals to sum
of all its eigenvalues.

The dual function is give by

g(z) = min
x

L(x, z) =

{
−∞ if ∃i s.t. ci + Tr(zFi) 6= 0

Tr(zG) else

Hence, to maintain the feasibility, the dual optimization problem
can be expressed as

max
z

tr(zG)

s.t. tr(zG) = −ci ∀i = 1, · · · , n

z ≥ 0

where we utilize the fact that Sm
+ is self-dual, that is, (Sm

+)
∗ = Sm

+.
In summarize, to formulate the dual problem, what we need to do

are

1. Given a cone k, find the dual cone k∗.

2. Restrict multipliers to be in k∗.

Bibliography

	Introduction
	Vectors and functions
	Matrices and eigen decomposition
	Matrices: array of numbers

	Symmetric matrices and spectral decomposition
	Symmetric Matrices

	Singular value decomposition
	The Singular Value Decomposition(SVD)

	Linear equations and least squares
	Least Squares

	Linear, quadratic, and quadratically-constrained quadratic programs
	Linear Programs: An Optimization Problem
	Quadratic program(QP)

	Convex sets and functions
	Linear/affine/convex/conic hulls & sets

	Convex optimization
	Duality
	Bibliography

