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Overview

Overview
My research focuses on one-shot information theory, which addresses scenarios in
source coding and channel coding where the signal blocklength is 1.

In this presentation, I will describe three works:
• Part 1: One-shot coding over general noisy networks.
• Part 2: One-shot information hiding.
• Part 3: Compressing differential privacy mechanisms by one-shot channel

simulation.

For these problems, we derive novel techniques that are rooted in the Poisson
functional representation (Li and El Gamal, 2018), which also serves as a bridge
between one-shot coding and differential privacy.

Liu, Y. & Li, C. T. (2024). One-Shot Coding over General Noisy Networks. ISIT 2024. Journal version has been submitted to IEEE
Transactions on Information Theory.

Liu, Y. & Li, C. T. (2024). One-Shot Information Hiding. ITW 2024.
Liu, Y., Chen, W. N., Özgür, A. & Li, C. T. (2024). Universal exact compression of differentially private mechanisms. NeurIPS 2024.
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Background

One-Shot Information Theory
What do we mean by one-shot information theory and why we study it?

• In conventional Shannon theory, we study information limits assuming the
signal blocklength n approaches infinity, but in practice it never does.

• For large n, the decoder must wait for a long delay.
• In modern applications (e.g., IoT), packets can even be very short!

• Finite-blocklength regime (Polyanskiy et al., 2010): n is finite.
• One-shot information theory: the extreme case where n = 1.

• Sources and channels are arbitrary and used once, not necessarily memoryless.
• Point-to-point: (Feinstein, 1954; Shannon, 1957; Hayashi, 2009).
• Multiuser case: (Verdú, 2012; Yassaee et al., 2013; Watanabe et al., 2015).

• Clarification:
1 Only 1 bit is sent?

1 No! We transmit one symbol X; it can substituted by a sequence Xn or anything.
2 Too troublesome to prove?

1 No! With appropriate tools, the coding schemes and proofs can be even simpler.

• Goal: one-shot achievability results that can recover existing asymptotic
results when applied to memoryless sources and channels.
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One-Shot Information Theory

From Asymptotic Capacity to Nonasymptotic Behavior
• From Shannon, when n → ∞, the channel capacity is C = maxPX I(X; Y );
• What if the blocklength n = 1?

• What kind of guarantees are we looking for?
• Example: Dependence testing bound by (Polyanskiy et al., 2010):

P{M ̸= M̂} ≤ E
[
min

{L − 1
2 · 2−ιX;Y (X;Y ), 1

}]
, (1)

where ιX;Y (X; Y ) := log(PX|Y (x|y)/PX(x)) is the information density
and we write ι(X; Y ) when the context is clear; I(X; Y ) = E[ι(X; Y )].
Asymptotic Capacity:

1 Let L = 2nR, assuming the channel is memoryless, we know
PY n|Xn (yn|xn) =

∏n

i=1 PY |X(yi|xi) in the absense of feedback.

2 Apply to (1), we get Pe ≤ E
[

min{2nR−
∑n

i=1
ι(Xi;Yi)

, 1}
]
.

3 Let n → ∞, by the law of large numbers, 1
n

∑n

i=1 ι(Xi; Yi) ≈ I(X; Y ).
4 Hence Pe → 0 if R < I(X; Y ).

Yanxiao Liu One-Shot Coding and Applications 5
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Poisson Functional Representation
Poisson Functional Representation (Li and El Gamal (2018))

• Let (Ti)i be a Poisson process with rate 1, i.e., T1, T2 − T1, . . . ∼ Exp(1).
• Let (Ui)i

iid∼ µ be a sequence independent of (Ti)i.
• Denote U := (Ui, Ti)i, which can be viewed as a “soft codebook”.
• Fix a distribution P over U s.t. P ≪ µ (P is absolutely continuous w.r.t µ).
• The Poisson functional representation selectsa

UP := UK , where K = argmini

(
Ti ·

(dP

dµ
(Ui)

)−1
)

,

where dP
dµ

(·) is the Radon-Nikodym derivative.
aThe “marked” Poisson process U supports a “query operation”: with input P , it outputs one sample UP ∼ µ.

Yanxiao Liu One-Shot Coding and Applications 6
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Poisson Functional Representation

When P is over a discrete space U , we can use exponential random variables.

Poisson Functional Representation (PFR) for discrete U
• For a finite set U , let U := (Zu)u∈U be i.i.d. Exp(1) random variable.
• Given a distribution P over U , the Poisson functional representation is:

UP := argminu

Zu

P (u) . (2)

• PFR was introduced for one-shot channel simulation and some compression
tasks in information theory (Li and El Gamal, 2018).

• Part 1 and 2: UP can be viewed as an encoder or a decoder, with input P .
• Part 3: UP “simulates” a channel P , i.e., UP ∼ P (properties of

exponential random variables).
• PFR has been utilized in studying minimax learning (Li et al., 2020), neural

estimation (Lei et al., 2023), reinforcement learning (Kobus and Gündüz,
2025) and many other settings.

Yanxiao Liu One-Shot Coding and Applications 7
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Poisson Matching Lemma
• Poisson Matching Lemma (Li and Anantharam, 2021) bounds the

probability of mismatch between the PFRs applied on different distributions.

Poisson Matching Lemma (PML)
• UP (1), . . . , UP (|U|) are elements of U ascendingly sorted by Zu/P (u).
• Let U−1

P : U → [|U|] be the inverse function of i 7→ UP (i).
• For distributions P, Q over U , we have the following almost surely:

E
[
U−1

Q (UP )
∣∣∣ UP

]
≤ P (UP )

Q(UP ) + 1.

PML has been studied in hypothesis testing (Guo et al., 2024), unequal message
protection (Khisti et al., 2024) and secret key generation (Hentilä et al., 2024).
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Poisson Matching Lemma on Channel Coding

Example (channel coding): how is the PML used (Li and Anantharam, 2021)?
1 Let P := PX × δm, Q := PX|Y (·|Y ) × PM and δm denote P(M = m) = 1.
2 Encoder observes M ∼Unif[L] and sends the X-component of UP to PY |X ;
3 Decoder observes Y and recovers the M -component of UQ.

Pe ≤ P
(
(X, M) ̸= UPX|Y (·|Y )×PM

)
≤ E

[
min

{
P

(
UPX ×δm ̸= UPX|Y (·|Y )×PM

∣∣∣UPX ×δm

)
, 1

}]
= E

[
min

{
P

(
U−1

PX|Y (·|Y )×PM

(
UPX ×δm

)
> 1

∣∣∣UPX ×δm

)
, 1

} ]
(a)
≤ E

[
min

{
E

[
U−1

PX|Y (·|Y )×PM

(
UPX ×δm

)
− 1

∣∣∣UPX ×δm

]
, 1

} ]
(b)
≤ E

[
min

{
P (UPX ×δm )

/
Q(UPX ×δm ), 1

}]
= E

[
min

{
L · 2−ι(X;Y ), 1

}]
.

where (a) is by the Markov’s inequality and (b) is by the PML.

In the rest of this presentation, we will present novel techniques based on the
PFR and PML, and extend their capabilities to different tasks.
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A Unified One-Shot Coding Framework

Overview
• Li and Anantharam (2021) have studied one-shot results of various settings.
• All the settings are simple (≤ 2 senders/receivers) and single-hop (no relays).
• We consider one-shot coding over general noisy acyclic networks.

• When a large number of nodes are involved, it becomes difficult to use the
original Poisson matching lemma for analysis.

• We look for a one-shot counterpart of:
• unified random coding bound by (Lee and Chung, 2018);
• noisy network coding (Lim et al., 2011).

Yanxiao Liu One-Shot Coding and Applications 11
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A Unified One-Shot Coding Framework

• Lee and Chung (2018) introduced a unified random coding bound that
1 unified and generalized many known relaying strategies;
2 can yield asymptotic bounds without complicated error analysis.

• We introduce a unified one-shot coding framework over noisy networks
• that is applicable to any combination of source coding, channel coding and

coding for computing problems in one-shot scenarios.

• We recover many known one-shot achievability results.
• We derive novel one-shot achievability results for:

• one-shot (primitive) relay channel: partial-decode-forward bound and
compress-forward bound;

• one-shot cascade multiterminal source coding.
Yanxiao Liu One-Shot Coding and Applications 12
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New Technique: Exponential Process Refinement

Refining a distribution by an exponential process
• For a joint distribution QV,U over V × U , the refinement of QV,U by U:

QU
V,U (v, u) := QV (v)

U−1
QU|V (·|v)(u)

∑|U|
i=1 i−1

for all (v, u) in the support of QV,U .
• If QV,U represents our “prior distribution” of (V, U), then the refinement

QU
V,U is the updated “posterior distribution” after taking U into account.

Exponential Process Refinement Lemma (EPRL)
• For a distribution P over U and a joint distribution QV,U over a finite

V × U , for every v ∈ V, we have, almost surely,

E
[

1
QU

V,U (v, UP )

∣∣∣∣UP

]
≤ ln |U| + 1

QV (v)

(
P (UP )

QU|V (UP |v) + 1
)

.

• It keeps track of the evolution of the “posterior probability” of the correct
values of a large number of random variables through the refinement process.

Yanxiao Liu One-Shot Coding and Applications 13
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One-Shot Relay Channel

One-Shot Relay Channel
1 Encoder observes M ∼ Unif[L] and outputs X, which is sent to PYr|X .
2 Relay observes Yr and outputs Xr.
3 (X, Xr, Yr) is passed through the channel PY |X,Xr,Yr .
4 Decoder observes Y and recovers M̂ .

• One-shot case of relay-with-unlimited-look-ahead (El Gamal et al., 2007).
• “Best one-shot approximation” of the conventional relay channels (Van

Der Meulen, 1971; Cover and Gamal, 1979).1

1One-shot settings cannot model “networks with causality”, e.g., conventional relay channels.
Yanxiao Liu One-Shot Coding and Applications 14
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One-Shot Relay Channel

Theorem (One-Shot Achievable Bound)
For any PX , PU|Yr , function xr(yr, u), there is a coding scheme for the one-shot
relay channel such that the error probability satisfies

Pe ≤ E
[

min
{

γL2−ι(X;U,Y )(2−ι(U ;Y )+ι(U ;Yr) + 1
)
, 1

}]
,

where (X, Yr, U, Xr, Y ) ∼PXPYr|XPU|Yr δxr(Yr,U)PY |X,Yr,Xr , and γ := ln |U| + 1.

Proof
• “Random codebooks” U1, U2: independent exponential processes.
• Encoder: U1 = (U1)PU1 ×δM .
• Relay: U2 = (U2)PU2|Yr (·|Yr), then outputs Xr = xr(Yr, U2).

Yanxiao Liu One-Shot Coding and Applications 15
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One-Shot Relay Channel

• Decoder observes Y , and refine PU2|Y (·|Y ) to QU2 := P U2
U2|Y . By EPRL:

E
[

1
QU2 (U2)

∣∣∣∣ U2, Y, Yr

]
≤ (ln |U2| + 1)

(
PU2|Yr (U2)
PU2|Y (U2) + 1

)
. (3)

• Compute QU2 PU1|U2,Y over U1 × U2, and let its U1-marginal be Q̃U1 .
• Let Ũ1 = (U1)Q̃U1 ×PM

, and output its M -component.
• Error analysis:

P(Ũ1 ̸= U1 | X, Yr, U2, Xr, Y, M)
PML
≤ E

[
min

{
PU1 (U1)δM (M)

PU1|U2,Y (U1|U2, Y )QU2 (U2)PM (M) , 1
}∣∣∣∣X, Yr, U2, Xr, Y, M

]
(a)
≤ min

{
L PU1 (U1)

PU1|U2,Y (U1|U2, Y ) (ln |U2| + 1)
(

PU2|Yr (U2)
PU2|Y (U2) + 1

)
, 1

}
= min

{
(ln |U2| + 1)L2−ι(X;U2,Y )(2−ι(U2;Y )+ι(U2;Yr) + 1

)
, 1

}
,

where (a) by Jensen’s inequality, (3), and δM (M) = 1, PM (M) = 1/L.

Implied asymptotic rate: R ≤ I(X; U, Y ) − max
{

I(U ; Yr) − I(U ; Y ), 0
}

.

Yanxiao Liu One-Shot Coding and Applications 16
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One-Shot Relay Channel: Partial-Decode-Forward Bound

Splitting the message M ∼ Unif[L] into M1 ∼ Unif[J] and M2 ∼ Unif[L/J], we
can let the relay decodes part of the message and provide the following bound.

Corollary (Partial-Decode-Forward Bound)
Fix any PX,V , PU|Yr,V , function xr(yr, u, v), and J which is a factor of L. There
exists a coding scheme for the one-shot relay channel with

Pe ≤ E
[

min
{

J2−ι(V ;Yr) + (ln(J|U|) + 1)(ln(J|V|) + 1)LJ−12−ι(X;U,Y |V )

·
(
2−ι(U ;V,Y )+ι(U ;V,Yr) + 1

)(
J2−ι(V ;Y ) + 1

)
, 1

}]
,

where (X, V, Yr, U, Xr, Y ) ∼ PX,V PYr|X,V PU|Yr,V δxr(Yr,U,V )PY |X,Yr,Xr .

It recovers the partial-decode-forward bounds for relay-with-unlimited-look-ahead
(El Gamal et al., 2007) and primitive relay channels (Kim, 2007).

Yanxiao Liu One-Shot Coding and Applications 17



Preliminaries Part 1: One-Shot Coding over Noisy Networks Part 2: One-Shot Information Hiding Part 3: Poisson Private Representation References

One-Shot Primitive Relay Channel

One-shot primitive relay channels (Kim, 2007): Y = (Y ′, Y ′′) and PY |X,Xr,Yr
= PY ′|X,Yr PY ′′|Xr can be decomposed into two orthogonal components.

Theorem
For any PX , PXr , PU′|Yr , there is a coding scheme for the one-shot primitive
relay channel with M ∼ Unif[L] such that

Pe ≤ E
[
min

{ (
ln(|U ′||Xr|) + 1

)
L2−ι(X;U′,Y ′)(2−ι(Xr;Y ′′)+ι(U′;Yr|Y ′)+1

)
, 1

}]
,

(X, Yr, U ′, Y ′) ∼ PXPYr|XPU′|Yr PY ′|X,Yr independent of (Xr, Y ′′) ∼ PXr PY ′′|Xr .

It recovers the asymptotic compress-and-forward bound (Kim, 2007):
R ≤ I(X; U ′, Y ′) − max{I(U ′; Yr|Y ′) − max

PXr
I(Xr; Y ′′), 0}

Yanxiao Liu One-Shot Coding and Applications 18
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General Acyclic Discrete Network

General Acyclic Discrete Network (ADN)
• Nodes are labelled by 1, . . . , N .
• Node i observes Yi ∈ Yi and produces Xi ∈ Xi.
• ADN: a collection of channels (PYi|Xi−1,Y i−1 )i∈[N ].

Xi and Yi can represent sources, states or messages in source and channel coding

Figure 1: A unified view: (a) channel coding; (b) source coding.

• Channel coding: Message Y1 is encoded by node 1 to X1; node 2 sees Y2 and outputs X2.
• Lossless source coding: Y1 is source, X1 = Y2 is description, X2 is reconstruction.

Yanxiao Liu One-Shot Coding and Applications 19
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General Acyclic Discrete Network

• X̃i, Ỹi: actual random variables from the coding scheme.
• Xi, Yi: random variables following an ideal distribution.

• Example 1 (channel coding): the ideal distribution is Y1 = X2 ∼ Unif[L]
(decoding without error). If we ensure X̃2, Ỹ 2 is “close to” the ideal X2, Y 2,
it implies Ỹ1 = X̃2 with high probability, giving a small error probability.

• Take an “error set” E that we do not want (X̃N , Ỹ N ) to fall into.
• Example 2 (channel coding): E is the set where Ỹ1 ̸= X̃2, i.e., an error occurs.
• Example 3 (lossy source coding): E is the set where d(Ỹ1, X̃2) > D, i.e., the

distortion exceeds the limit.
• Goal: make PX̃N ,Ỹ N “approximately as good as” PXN ,Y N , i.e.,

P
(
(X̃N , Ỹ N ) ∈ E

)
≲ P

(
(XN , Y N ) ∈ E

)
,

which can be guaranteed by ensuring the closeness in TV distance:

∥PXN ,Y N − PX̃N ,Ỹ N ∥TV ≈ 0. (4)

• With public randomness, (4) can be achieved; it can be viewed as a channel
simulation (Cuff, 2013) or a coordination (Cuff et al., 2010) result.

Yanxiao Liu One-Shot Coding and Applications 20
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Coding Scheme

Deterministic coding scheme (fi)i∈[N ]

A sequence of functions (fi)i∈[N ], where fi : Yi → Xi. For i = 1, . . . , N :
• Encoding: X̃i = fi(Ỹi).
• Ỹi follows PYi|Xi−1,Y i−1 conditional on X̃i−1, Ỹ i−1.

Goal: P
(
(X̃N , Ỹ N ) ∈ E

)
≲ P

(
(XN , Y N ) ∈ E

)
To construct a deterministic coding scheme, we utllize a randomized coding scheme.

Public-randomness coding scheme (PW , (fi)i∈[N ])

1 Generate public randomness W ∈ W available to all nodes;
2 Encoding: fi : Yi × W → Xi, X̃i = fi(Ỹi, W ).

Goal: ∥PXN ,Y N − PX̃N ,Ỹ N ∥TV ≈ 0

If there is a good public-randomness coding scheme, then there is a good deter-
ministic coding scheme by fixing the value of W .

Yanxiao Liu One-Shot Coding and Applications 21
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Main Theorem

Theorem

Fix ADN (PYi|Xi−1,Y i−1 )i∈[N ]. For any collection of (ai,j)i∈[N ],j∈[di] where for
each i, (ai,j)j∈[di] is a sequence of distinct indices in [i−1], any sequence (d′

i)i∈[N]

with 0 ≤ d′
i ≤ di and any collection of (P

Ui|Yi,U
′
i
, P

Xi|Yi,Ui,U
′
i
)i∈[N ] (where U i,S

:= (Uai,j )j∈S for S ⊆ [di] and U
′
i := U i,[d′

i
]), which induces joint distribution of

XN , Y N , UN , there exists a public-randomness coding scheme such that

∥PXN ,Y N − PX̃N ,Ỹ N ∥TV ≤ E
[

min
{ N∑

i=1

d′
i∑

j=1

Bi,j , 1
}]

,

where γi,j :=
∏di

k=j+1

(
ln |Uai,k | + 1

)
and

Bi,j := γi,j

di∏
k=j

(
2−ι(Ui,k;Ui,[di]\[j:k],Yi)+ι(Ui,k;U′

ai,k
,Yai,k

)+ 1{k >j}
)
.

Yanxiao Liu One-Shot Coding and Applications 22
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One-Shot Relay Channel

Main Theorem on One-Shot Relay Channel
1 Network:

• Node 1 (encoder) has input Y1 = M and output X1 = X.
• Node 2 (relay) has input Y2 = Yr and output X2 = Xr.
• Node 3 (decoder) has input Y3 = Y and output X3 = M .

2 Auxiliaries: U1 = (X, M) and U2 = U .
3 Decoding order: decode with order “U1, U2?”, where d′

3 = 1 and d3 = 2.a

4 Applying our main theorem, we recover

Pe ≤ (ln |U2| + 1)L2−ι(X;U2,Y )(2−ι(U2;Y )+ι(U2;Yr) + 1
)
.

a“?” means the random variable is only utilized in non-unique decoding.
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One-Shot Cascade Multiterminal Source Coding

One-Shot Cascade Multiterminal Source Coding (Cuff et al., 2009)
• Two sources X, Y ∼ PX,Y are described by separate encoders.
• Encoder a observes X, sends M ∈ [L1] to encoder b, which then creates

M ′ ∈ [L2] summarizing both sources and sends M ′ to the decoder.
• Decoder recovers Z̃ with the probability of excess distortion

Pe := P{d(X, Y, Z̃) > D}, where d : X × Y × Z → R≥0 is a distortion
measure.

• Applicable to scenarios where one needs to pass messages to neighbors in
order to compute functions:

• distributed data collection;
• aggregating measurements in sensor networks;
• federated computing.

Yanxiao Liu One-Shot Coding and Applications 24
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One-Shot Cascade Multiterminal Source Coding

• Let Mi ∈ [Li]. We split the encoder a. We have a network:
1 Encoder a1 (node 1) has input Y1 = X and output X1 = U .
2 Encoder a2 (node 2) has input Y2 = (U, X) and output X2 = M1.
3 Encoder b (node 3) has input Y3 = (Y, M1, M2) and output X3 = M3.
4 Decoder (node 4) has input Y4 = (M2, M3) and output X4 = Z.

• Auxiliaries: U1 = (U, M2), U2 = (V, M1) and U3 = (Z, M3).
1 Encoder b (node 3) decodes with the order “U2, U1” where d′

3 = d3 = 2:
B3,1 = (ln(|U|L̃2) + 1)

(
L̃−1

1 L̃−1
2 2ι(U,V ;X|Y ) + L̃−1

1 2−ι(V ;U,Y )+ι(V ;U,X)
)

,

B3,2 = L̃−1
2 2−ι(U ;V,Y )+ι(U ;X),

2 Decoder (node 4) decodes with the order “U3, U1?” where d′
4 = 1, d4 = 2:

B4,1 =
(

ln(|U|L̃2) + 1
)

L̃−1
3 2ι(Z;V,Y |U)

(
L̃−1

2 2ι(U ;X) + 1
)

.

• One-shot Bound: Pe ≤ E
[

min
{

1{d(X, Y, Z) > D}+B3,1 +B3,2 +B4,1, 1
}]

• It recovers the best-known bound (local-computing-and-forwarding):
R1 > I(X; U, V |Y ), R2 > I(X; U) + I(Z; V, Y |U)

and D > E[d(X, Y, Z)], X, Y, Z, U, V ∼ PXPY |XPU,V |XPZ|Y,U,V .
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Gelfand-Pinsker Problem

• Network: Y1 = (M, S), Y2 = Y , PY2|Y1,X1 is PY |S,X and X2 = M .
• Auxiliary: U1 = (U, M) for some U following PU|S given S.
• Decoding order: on node 2 decode “U1”.

Corollary (Gelfand and Pinsker (1980))
Fix PU|S and function x : U × S → X . There exists a deterministic coding
scheme for the channel PY |X,S with S ∼ PS , M ∼ Unif[L] such that

Pe ≤ E
[

min
{

L2−ι(U ;Y )+ι(U ;S), 1
}]

,

where S, U, X, Y ∼ PSPU|Sδx(U,S)PY |X,S .

Similar to the one-shot result in (Li and Anantharam, 2021), above implies the
best known second order result of the Gelfand-Pinsker problem (Scarlett, 2015).
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Wyner-Ziv Problem

• Network: Y1 = X, X1 = M , Y2 = (M, T ) and X2 = Z.
• Auxiliary: U1 = (U, M) for some U following PU|X given X.
• Decoding order: on node 2 decode “U1”.

Corollary (Wyner and Ziv (1976))
Fix PU|X and function z : U × Y → Z. There exists a deterministic coding
scheme with source X ∼ PX , side information PT |X and M ∈ [L] such that

Pe ≤ E
[

min
{

1{d(X, Z) > D} + L−12−ι(U ;T )+ι(U ;X), 1
}]

,

where X, Y, U, Z ∼ PXPY |XPU|Xδz(U,Y ).

In coding for computing (Yamamoto, 1982) where node 2 lossily recovers f(X, T ):

Pe ≤ E[min{1{d(f(X, T ), Z) > D} + L−12−ι(U ;T )+ι(U ;X), 1}].
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Multiple Access Channel

• Network: Y1 = M1, Y2 = M2, Y3 = Y and X3 = (M1, M2).
• Auxiliaries: U1 = (X1, M1) and U2 = (X2, M2).
• Decoding order: on node 3 decode “U2, U1”.

Corollary (Multiple Access Channel (Liao (1972), Ahlswede (1974)))
Fix PX1 , PX2 . There exists a deterministic coding scheme for the multiple access
channel PY |X1,X2 with Mj ∼ Unif[Lj ] for j = 1, 2 such that

Pe ≤ E
[

min
{

γL1L22−ι(X1,X2;Y ) + γL22−ι(X2;Y |X1) + L12−ι(X1;Y |X2), 1
}]

,

where γ := ln(L1|X1|) + 1, (X1, X2, Y ) ∼ PX1 PX2 PY |X1,X2 .

Asymptotic region: R1 < I(X1; Y |X2), R2 < I(X2; Y |X1), R1+R2 < I(X1, X2; Y ).
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Summary

Summary
• We provide a unified one-shot coding framework for communication and

compression over general acyclic noisy networks.
• We design a proof technique “exponential process refinement lemma”

that can keep track of a large number of auxiliary random variables and
greatly simplify the analysis.

• We provide novel one-shot achievability results for various settings.
• Our results can recover existing one-shot and asymptotic bounds on many

settings.
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Information Hiding
• In previous section, we considered a “multi-hop generalization” of the PML.
• Back to point-to-point channels, what if the channel itself is uncertain?

Figure 2: Information Hiding: AY |X is chosen by an attacker from a set A,

Information Hiding (Moulin and O’sullivan (2003))
• Game-theoretic setting: an encoder-decoder team is against an attacker:

• Encoder: upon observing message M ∼ [L], host signal S ∈ S and common
randomness K ∈ K (S, K ∼ PS,K), it produces X = f(S, K, M).

• X is expected to “look like” S: d1(S, X) is small with d1 : S × X → [0, ∞).
• Attacker: it chooses a channel AY |X ∈ A to destroy M .

• Attacker knows the distributions (not the values) of S, M, K, and the code in use.
• Decoder: upon observing Y, K, it recovers M̂ = ϕ(K, Y ).

• Decoder is uninformed of the attacker’s strategy.
• We bound the following worst case failure probability:

Pe := sup
AY |X ∈A

P
(

d1(S, X) > D1 OR M ̸= M̂
)

.
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One-Shot Information Hiding

• By (Moulin and O’Sullivan, 2003), asymptotic hiding capacity was derived.
• Wide range of applications: watermarking, fingerprinting, steganography...

Our Contributions
1 We derive one-shot results that apply to any host distribution, and any class

of attack channels (not memoryless or subject to distortion constraints).
2 Our techniques include the Poisson matching lemma together with a

covering argument (Blackwell et al., 1959).
3 We recover the asymptotic capacity, hence give an alternative proof.
4 Unlike (Moulin and O’Sullivan, 2003) which assumed the decoder knows the

attack channel, we let the decoder be uninformed of the attacker.a

aIt was also dropped by (Somekh-Baruch and Merhav, 2004), in which K is a shared key of
unlimited size independent of M, S that can be chosen as part of the code, but our side information
K is given and cannot be changed.
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One-Shot Achievability Results
• To account for all possible A ∈ A, we need a penalty on the “size” of A.
• For A with infinite cardinality, we find a finite Ã ⊆ A such that every

A ∈ A is close enough to some Ã ∈ Ã (Blackwell et al., 1959).
• Given a set of channels A from X to Y, its ϵ-covering number is

Nϵ(A) := min
{

|Ã|:Ã ⊆ A, sup
A∈A

min
Ã∈Ã

sup
x∈X

∥AY |X(·|x)−ÃY |X(·|x)∥TV ≤ ϵ
}

.

Theorem

Fix any PU,X|S,K and channel ÂY |X . For any ϵ ≥ 0, there exists an information
hiding scheme satisfying Pe ≤

Nϵ(A) sup
AY |X ∈A

EY |X∼AY |X

[
1−1{d1(S, X) ≤ D1}

(
1+L2−ι̂(U ;Y |K)+ι(U ;S|K))−1

]
+ϵ,

where (S, K, U, X, Y ) ∼ PS,KPU,X|S,KAY |X in the expectation, and ι̂(U ; Y |K)
is the information density computed by PS,KPU,X|S,KÂY |X (instead of AY |X),
assuming that ι(U ; S|K), ι̂(U ; Y |K) are almost surely finite for every AY |X ∈ A.

When K = ∅, d1(s, x) = 0, and A = {AY |X}, taking ÂY |X = AY |X , above
reduces to the one-shot Gelfand-Pinsker coding result (Li and Anantharam, 2021).
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One-Shot Achievability Results: Proof
• Design the code assuming ÂY |X is attacker; show it works for all AY |X ∈ A.
• Codebook: U:=((Ūi, M̄i), Ti)i s.t. (Ti)i ∼ PP(1), Ūi

iid∼ PU , M̄i
iid∼ Unif[L].

• Encoder calculates UPU|S,K (·|S,K)×δM
and sends X|(S, K, U) ∼ PX|S,K,U .

• Decoder calculates M̂ by UP̂U|Y,K (·|Y,K)×PM
where P̂U|Y,K is by using ÂY |X .

Pe(AY |X ) := 1 − PY |X∼AY |X

(
d1(S, X) ≤ D1 AND M = M̂

)
≤ E

[
1 − 1{d1(S, X) ≤ D1} · P

(
(U, M) = UP̂U|Y,K (·|Y,K)×PM

|M, S, U, Y, K
)]

PML
≤ E

[
1 − 1{d1(S, X) ≤ D1} ·

(
1 +

dPU|S,K (·|S, K) × δM

dP̂U|Y,K(·|Y, K) × PM

(U, M)
)−1]

≤ sup
AY |X ∈A

EY |X∼AY |X

[
1 − 1{d1(S, X) ≤ D1}

(
1 + L2−ι̂(U;Y |K)+ι(U;S|K)

)−1]
=: Pe.

• We’re left to fix the codebook. Let Ã ⊆ A attain the minimum in Nϵ(A):
1 LetPe(A):=EC [Pe(A, C)]; ∀A ∈ A, let Ã ∈ Ã has sup

x∈X
∥A(·|x)−Ã(·|x)∥TV ≤ ϵ;

2 Hence |Pe(A, c)−Pe(Ã, c)| ≤ ϵ and Pe(A, c) ≤
∑

Ã∈Ã Pe(Ã, c) + ϵ, therefore

EC
[

sup
A∈A

Pe(A, C)
]

≤ EC
[

sup
Ã∈Ã

Pe(A, C) + ϵ
]

≤
∑
Ã∈Ã

Pe(Ã) + ϵ ≤ |Ã| · Pe + ϵ

3 The proof is completed by existing a codebook c s.t. sup
A∈A

Pe(A, c) ≤ |Ã|Pe + ϵ
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Recovering the Asymptotic Result

Proposition: simple bound on the ϵ-covering number
If X and Y are discrete and finite, then

Nϵ(A) ≤
( 1

2ϵ
+ |Y| + 1

2

)|X |·|Y|
. (5)

Proof:
• Write d(A, Ã) := supx∈X ∥AY |X(·|x) − ÃY |X(·|x)∥TV.
• Start with Ã = ∅, add A ∈ A not currently covered by Ã to Ã one by one.

The (ϵ/2)-balls {A : d(A, Ã) ≤ ϵ/2} must be disjoint for Ã ∈ Ã.
• Treat AY |X as a transition probability matrix A ∈ R|Y|×|X |.
• d(A, Ã) = 1

2 ∥A − Ã∥1 = 1
2 maxx

∑
y

|Ay,x − Ãy,x|.
• Ball {A ∈ R|Y|×|X | : d(A, Ã) ≤ ϵ/2} has volume V1 := ((2ϵ)|Y|/(|Y|!))|X |;

they are subsets of {A ∈ R|Y|×|X | : min
x,y

Ay,x ≥ −ϵ, max
x

∑
y

Ay,x ≤ 1 + ϵ},

which has volume V2 := ((1 + (|Y| + 1)ϵ)|Y|/(|Y|!))|X |.
• Hence |Ã| is upper bounded by V2/V1, giving (5).
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Recovering the Asymptotic Result by Moulin and O’sullivan (2003)

• Consider sequences Sn, Kn, Xn, Y n from discrete spaces, and AY |X is
memoryless and subject to a distortion constraint, the hiding capacity is:

C = max
PU,X|S,K

min
AY |X : E[d2(X,Y )]≤D2

(
I(U ; Y |K) − I(U ; S|K)

)
, (6)

where the maximum is over PU,X|S,K with E[d1(S, X)] ≤ D1.
• For a input distribution PX , the class of memoryless attackers is

An(PX) :=
{

An
Y |X : AY |X is subject to E(X,Y )∼PX AY |X

[d2(X, Y )] ≤ D2
}

• Let PU,X|S,K achieve the max of (6) subject to E[d1(S, X)] ≤ D′
1, D′

1 < D1.
• Let ÂY |X be the minimizer of minAY |X : E[d2(X,Y )]≤D2 I(U ; Y |K).
• Fix R < Î(U ; Y |K) − I(U ; S|K) assuming Î(U ; Y |K), ι̂(U ; Y |K) are

calculated from PU,X,S,KÂY |X . Let L = 2nR.

1 L2−ι̂(Un;Y n|Kn)+ι(Un;Sn|Kn) ≤ 2nR−
∑n

i=1
(ι̂(Ui;Yi|Ki)−ι(Ui;Si|Ki)) n→∞→ 0

2 Construct an ϵ-cover of An(PX) using an (ϵ/n)-cover of A(PX), we find
Nϵ(An(PX)) ≤ N ϵ

n
(A(PX)) = O(( ϵ

n
)|X |·|Y|), growing slower than above.

3 Take ϵ = 1/n, Pe → 0 as n → ∞. Taking D′
1 → D1 completes the proof.
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Summary

Summary
• We provide a one-shot analysis of the information hiding problem.
• Our results apply to arbitrary channels (not necessarily memoryless or

subject to distortion constraints), any host distribution and any class of
attackers (not necessarily finite).

• We assume the decoder is uninformed of the attack channel, which is more
general and suitable to the one-shot scenario.

• We provide an alternative proof of the asymptotic hiding capacity which is
probably simpler.
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Background

• So far, based on the PFR and PML, we have shown:
1 a multi-hop generalization of the PML on noisy networks;
2 a covering argument together with the PML for channels with uncertainties.

• What if the channel is special and has some privacy properties?

Background
• In modern data science, large amounts of high-quality data generated with

personal information (by edge devices) are susceptible to privacy breaches.
• Differential privacy (Warner, 1965; Dwork et al., 2006) is a powerful tool for

safeguarding users’ privacy by properly randomizing the local data.
• Communicating (high-dimensional) local data to the central server is often a

bottleneck in the system pipeline, thus needs compression.

Research Question
How can we efficiently communicate private data?
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Differential Privacy (DP)

Definition: Differentially Private Mechanisms
Given a mechanism A which induces distribution PZ|X of Z = A(X), we say that
it satisfies (ϵ, δ)-DP if for any neighboringa (x, x′) ∈ N and S ⊆ Z, it holds that

P(Z ∈ S | X = x) ≤ eϵP(Z ∈ S | X = x′) + δ.

aWe consider a symmetric neighbor relation N ⊆ X 2, and say x, x′ are neighbors if (x, x′) ∈ N .
If a mechanism satisfies (ϵ, 0)-DP, we write it as ϵ-DP.
If N = X 2, we say the mechanism satisfies (ϵ, δ)-local DP.

• For ϵ ≤ 1, Bassily and Smith (2015) showed that a single bit can simulate
any local DP randomizer with a small degradation of utility.

• Bun et al. (2019) proposed a rejection-sampling-based compression
technique, which compresses an ϵ-DP mechanism into a 10ϵ-DP mechanism.

• Feldman and Talwar (2021) also considered a rejection sampling scheme.
• In (Triastcyn et al., 2021; Shah et al., 2022), importance sampling (or more

specifically, minimum random coding (Havasi et al., 2018)) was utilized.

These works are either approximate (the output distribution is distorted), or do
not guarantee compression sizes close to I(X; Z).
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Channel Simulation

One-shot channel simulation (a compression task) aims to find the minimal needed
communication over a noiseless channel to “simulate” another channel PZ|X .

One-Shot Channel Simulation
• Alice sees X ∼ PX and sends description M to Bob noiselessly, so that Bob

generates Z ∼ PZ|X . They share unlimited common randomness W .
• The goal is to find E[Len(M)], minimum expected description length of M .
• Converse: by X ↔ M ↔ Z, we know

E[Len(M)] ≥ H(M |W ) ≥ I(X; Z|W ) = I(X; Z, W ) − I(X; W )≥ I(X; Z)

• Achievability: The PFR (Li and El Gamal, 2018) promises:
1 E[log K] ≤ I(X; Z) + e−1 log e + 1
2 H(K) ≤ E[log K] + log

(
E[log K] + 1

)
+ 1.

3 E[Len(M)] ≤ I(X; Z) + log
(

I(X; Z) + 1
)

+ 5.
• Applications of channel simulation:

1 Neural network compression by (Havasi et al., 2018);
2 Image compression via variational autoencoders by (Flamich et al., 2020);
3 Differentially private federated learning by (Shah et al., 2022).
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Poisson Private Representation

Our Objective
• We treat differential privacy mechanism PZ|X as a channel, and simulate it.
• Can we just use the PFR?

• No! PFR selects K as a deterministic function of X and W .
• Changes on input affect K deterministically, but privacy requires randomness.

• We look for a scheme that preserves local differential privacy, while
maintaining the advantages of PFR.

Poisson Private Representation (PPR)
• We design an algorithm that compresses DP mechanism while ensuring:

1 Universality: we simulate arbitrary DP mechanism with discrete or continuous
input.

2 Exactness: we ensure exact simulation where the reproduced distribution
perfectly matches the original one.

3 Communication efficiency: we compress the output to a size close to the
theoretical lower bound I(X; Z).

• Our algorithm is the first method that can achieve all three targets.
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Poisson Private Representation
Poisson Private Representation: Construction
Input: x, (ϵ, δ)-DP mechanism PZ|X , reference distribution Q, parameter α > 1.

1 Generate shared randomness between user and server (Zi)i=1,2,...
iid∼ Q.

2 The user knows (Zi)i, input x, PZ|X and performs:
1 Generate the Poisson process (Ti)i with rate 1.
2 Compute T̃i := Ti ·

(
dP
dQ

(Zi)
)−1 where P := PZ|X(·|x).

3 Generate K ∈ Z+ with P(K = k) =
T̃ −α

k∑∞
i=1

T̃ −α
i

.

4 Compress and send K.

3 The server, which observes (Zi)i and K, outputs Z = ZK .
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Poisson Private Representation: Theory

Theorem: Communication efficiency
For PPR with parameter α > 1, message K satisfies

E[log K] ≤ DKL(P ∥Q) + log(3.56)
min{ α−1

2 , 1}
.

As a result, when the input X ∼ PX is random, taking Q = PZ , we have

E[log K] ≤ I(X; Z) + log(3.56)
min{ α−1

2 , 1}
.

Hence, K can be encoded into I(X; Z) + log(I(X; Z) + 1) + O(1) bits, close to
the theoretical lower bound I(X; Z).
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Poisson Private Representation: Theoretic Guarantees

Theorem: Exactness
The output Z of PPR follows PZ|X exactly.

Remarks
• Due to the exactness of PPR, it preserves all desirable statistical properties

(e.g., unbiasedness and Gaussianity).
1 If we only want a stand-alone privacy mechanism, we can just focus on the

privacy and utility.
2 However, if the output is used for downstream tasks (e.g., the server sends

aggregated mean from clients to data analysts), exactness ensures more
precise (central) privacy and utility guarantees.

• Dithered-quantization schemes only work for additive-noise mechanisms.
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Poisson Private Representation: Theoretic Guarantees

Theorem: Privacy Guarantee on ϵ-DP
If the mechanism PZ|X is ϵ-DP, then PPR P(Zi)i,K|X with α > 1 is 2αϵ-DP.

1 Consider neighbors x1, x2, let Pj := PZ|X(·|xj) and T̃j,i := Ti

/
( dPj

dQ
(Zi)).

Since PZ|X is ϵ-DP, we know e−ϵ dP2
dQ

(z) ≤ dP1
dQ

(z) ≤ eϵ dP2
dQ

(z), and hence

e−ϵT̃2,i ≤ T̃1,i ≤ eϵT̃2,i.

2 Let Kj be PPR’s output applied on Pj and A := (Zi, Ti)i. Almost surely,

P(K1 = k) =
T̃ −α

1,k∑∞
i=1 T̃ −α

1,i

≤
eαϵT̃ −α

2,k∑∞
i=1 e−αϵT̃ −α

1,i

= e2αϵP(K2 = k|(Zi, Ti)i).

3 For any measurable S ⊆ Z∞ × Z≥0,
P(((Zi)i, K1) ∈ S) = E[P(((Zi)i, K1) ∈ S|(Zi, Ti)i))]

= E
[ ∑

k:((Zi)i,k)∈S

P(K1 = k|(Zi, Ti)i))
]

≤ e2αϵE
[ ∑

k:((Zi)i,k)∈S

P(K2 = k|(Zi, Ti)i))
]

= e2αϵP(((Zi)i, K2) ∈ S)
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Poisson Private Representation: Theoretic Guarantees

Theorem: Privacy Guarantee on (ϵ, δ)-DP
If PZ|X is (ϵ, δ)-DP, then PPR P(Zi)i,K|X with parameter α > 1 is (2αϵ, 2δ)-DP.

Theorem: Tighter Privacy Guarantee on (ϵ, δ)-DP
If PZ|X is (ϵ, δ)-DP, then PPR P(Zi)i,K|X with parameter α > 1 is
(αϵ + ϵ̃, 2(δ + δ̃))-DP, for every ϵ̃ ∈ (0, 1] and δ̃ ∈ (0, 1/3] that satisfy
α ≤ e−4.2δ̃ϵ̃2/(− ln δ̃) + 1.
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Running Time

Running Time
• Note since E[log K] ≈ I(X; Z), K (and hence the running time) is at least

exponential in I(X; Z).
• However, an exponential complexity is also needed in sampling methods

without privacy guarantee, e.g., (Havasi et al., 2018) and (Maddison, 2016).
• By Agustsson and Theis (2020), no polynomial time general sampling-based

method exists (even without privacy constraint), if RP ̸= NP .
• Nevertheless, this is not an obstacle: I(X; Z) for a good local DP

mechanism must be small, or the leakage of X in Z will be too large.
• By Cuff and Yu (2016), for an ϵ-local DP mechanism, I(X; Z) ≤ min{ϵ, ϵ2}

• Another way to reduce the running time is to divide the data into small
chunks and apply the mechanism to each chunk separately.

Yanxiao Liu One-Shot Coding and Applications 48



Preliminaries Part 1: One-Shot Coding over Noisy Networks Part 2: One-Shot Information Hiding Part 3: Poisson Private Representation References

Application: Distributed Mean Estimation

Distributed Mean Estimation
• We compare PPR with (Chen et al., 2024) on distributed mean estimation,

which is the core sub-routine in federated optimization (Abadi et al., 2016).
• Each of n clients has Xi ∈Rd and sends Zi; server estimates µ= 1

n

∑n

i=1Xi.
• For Gaussian mechanism PZ|X(·|x) = N (x, σ2

n
Id) and proposal distribution

Q = N (0, ( C2

d
+ σ2

n
)Id), for each client i, the output of PPR is Zi, and:

• µ̂ = 1
n

∑
i
Zi is an unbiased estimator of µ, satisfying (ϵ, δ)-central DP and

has mean squared error (MSE) E[∥µ − µ̂∥2
2] = σ2d/n2.

• For ϵ < 1/
√

n, PPR satisfies (2α
√

nϵ, 2δ)-local DP.
• The average per-client communication cost ≤ ℓ + log(ℓ + 1) + 2 bits, where

ℓ ≤
d

2
log

(
nε2

2d ln(1.25/δ)
+ 1

)
+

log(3.56)
min{(α − 1)/2, 1}

.

• For a fixed α, the communication cost is as good as (Suresh et al., 2017;
Chen et al., 2024), and is better when n ≫ d.
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Application: Distributed Mean Estimation

Compare to the Coordinate Subsampled Gaussian Mechanism (CSGM) by (Chen et al., 2024).
• Compared to CSGM, PPR consistently achieves smaller MSE:

• For ϵ = 1 and compressing to 50 bits, we give a 33.61% MSE reduction;
• For ϵ = 0.5 and compressing to 25 bits, we give a 22.33% MSE reduction;
• Both schemes are asymptotically optimal, hence the reduction is significant.

• Running time can be greatly reduced by breaking the vector into chunks.
Yanxiao Liu One-Shot Coding and Applications 50



Preliminaries Part 1: One-Shot Coding over Noisy Networks Part 2: One-Shot Information Hiding Part 3: Poisson Private Representation References

Application: Metric Privacy and Laplace Mechanism

Metric Privacy of PPR
• ϵ-DP can be extended to metric privacy by using a metric dX (x, x′) over X .
• For a mechanism A := PZ|X and a metric dX , it has ϵ · dX -privacy (Andrés

et al., 2013; Chatzikokolakis et al., 2013) if for any x, x′ ∈ X , S ⊆ Z,

P(Z ∈ S | X = x) ≤ eϵ·dX (x,x′)P(Z ∈ S | X = x′).

• It recovers ϵ-central DP by letting dX be the Hamming distance, and ϵ-local
DP by letting dX be the discrete metric (Chatzikokolakis et al., 2013).

• Metric privacy of PPR: If the mechanism PZ|X satisfies ϵ · dX -privacy, then
PPR P(Zi)i,K|X with α > 1 satisfies 2αϵ · dX -privacy.

Laplace Mechanism
• For Laplace mechanism fZ|X ∝ e−ϵ·dX (x,z), dX (x, z) = ∥x − z∥2, with X ∈

{x ∈ Rd|∥x∥2 ≤ C} and Q = N (0, ( C2

d2 + d+1
ϵ2 )), PPR’s output has MSE

d(d+1)
ϵ2 , 2αϵ · dX -privacy, and compression size ≤ ℓ + log(ℓ + 1) + 2 bits,

ℓ := d

2 log
(2

e

(C2ϵ2

d
+ d + 1

))
− log

( Γ(d + 1)
Γ( d

2 + 1)

)
+ log(3.56)

min{(α − 1)/2} .
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Application: Metric Privacy and Laplace Mechanism

Compare to the discrete Laplace mechanism by quantization (Andrés et al., 2013). C = 10000, d = 500 and α = 2.

• Application: users send privatized Z to an untrusted server for some services.
• PPR performs better for large ϵ or small MSE, and preserve fZ|X exactly.
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Summary

Summary
• We propose a novel scheme for compressing differential privacy mechanisms,

called the Poisson private representation.
• Unlike previous schemes which are either constrained on special classes of

DP mechanisms or introducing additional distortions on the output, our
scheme can compress and exactly simulate arbitrary mechanisms while
providing privacy guarantees.

• PPR provides a compression size that is close to the theoretic lower bound.
• PPR is the first scheme that achieves universality, exactness and

near-optimal compression at the same time.
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Li, C. T., Wu, X., Özgür, A., and El Gamal, A. (2020). Minimax learning for distributed inference. IEEE Transactions on Information Theory, 66(12):7929–7938.
Lim, S. H., Kim, Y.-H., El Gamal, A., and Chung, S.-Y. (2011). Noisy network coding. IEEE Transactions on Information Theory, 57(5).
Maddison, C. J. (2016). A poisson process model for monte carlo. Perturbation, Optimization, and Statistics, pages 193–232.
Moulin, P. and O’Sullivan, J. A. (2003). Information-theoretic analysis of information hiding. IEEE Transactions on information theory.
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