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Abstract

One-shot information theory addresses scenarios in source coding and channel

coding where the signal blocklength is assumed to be 1. In this case, each source

and channel can be used only once, and the sources and channels are arbitrary

and not required to be memoryless or ergodic. We study the achievability part of

one-shot information theory, i.e., we consider explicit coding schemes in the one-

shot scenario. The objective is to derive one-shot achievability results that can

imply existing (first-order and second-order) asymptotic results when applied to

memoryless sources and channels, or applied to systems with memory that behave

ergodically.

Poisson functional representation was first proposed as a one-shot channel

simulation technique by Li and El Gamal [118] for proving a strong functional

representation lemma. It was later extended to the Poisson matching lemma by

Li and Anantharam [117], which provided a unified one-shot coding scheme for

a broad class of information-theoretic problems. The main contribution of this

thesis is to extend the applicability of Poisson functional representation to various

more complicated scenarios, where the original version cannot be applied directly

and further extensions must be developed. Below, we highlight some of the key

contributions.

1. In Chapter 3, we design a unified one-shot coding framework for the commu-

nication and compression of messages among multiple nodes across a general
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acyclic noisy network. This framework can be viewed as a one-shot counter-

part to the unified random coding bound studied by Lee and Chung [110],

as well as the noisy network coding developed by Lim et al. [126]. Our

general framework not only recovers a wide range of existing one-shot and

asymptotic results but also provides novel one-shot achievability results for

various network information theory problems.

2. In Chapter 4, we examine two classes of secrecy problems where the chan-

nel conditions are unknown to the encoder and the decoder, based on the

Poisson matching lemma and a covering argument. We provide one-shot

achievability results for a generalized information hiding setting [144] and

the compound wiretap channel [123], each of which recovers many existing

problems as special cases.

3. In Chapter 5, leveraging the Poisson functional representation, we design

a novel construction called Poisson private representation that can com-

press arbitrary differential privacy mechanisms. It is the first scheme that

achieves a close-to-optimal compression size (within a logarithmic gap),

exactness of the output distribution (thus preserving all the desirable sta-

tistical properties of the original privacy mechanism, such as unbiasedness

and Gaussianity), while ensuring local differential privacy. New trade-offs

among communication, accuracy, and central and local differential privacy

are established, and experimental advantages are demonstrated across dif-

ferent applications.
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摘要

單發信息论探討的是信道编码与信源压缩在信號區塊長度 1 时的一般情境。在
此情況下，每個信道與信源僅使用一次，且信道與信源都可以是任意的，並不
被要求具備無記憶性或遍歷性。本論文的目標是構造出新的編碼方式，以推導
出新的單發可達性結果。當這些結果應用於無記憶的信道與信源或是有遍歷性
的有記憶系統時，能夠推導出既有的一階與二階的漸近結果。泊松函數表示作
為一種單發信道模擬技術，最初由 Li 與 El Gamal 提出，用於證明強函數表示
引理及其他結果。Li 與 Anantharam 將其擴展為泊松配對引理，並提供了一套
能夠涵蓋廣泛的信息论問題的統一單發編碼方案。本論文的主要貢獻在於進一
步擴展泊松函數表示與泊松配對引理的適用範圍，基於它們來設計新的工具和
處理更為複雜的情境。下述分章節列舉本論文的幾個核心貢獻。
在第 3 章中，我們設計了一個針對任意無環噪聲網路中多個節點間資訊通

信與壓縮的統一框架。此框架可被視為 Lee 與 Chung 所研究之漸進隨機編碼
界限的單發對應版本，或者 Lim 等人所提出之噪聲網絡編碼的單發對應版本。
我們的編碼框架涵蓋極廣泛的網路信息论問題，不僅能復現多種既有的單發與
漸近結果，亦提出了多種新的單發可達性結果。在第 4 章中，我們基於泊松
配對引理，探討了兩類與資訊安全相關的問題，其共同點和難點在於編碼器與
解碼器需要在未知的信道狀態下編碼。我們對一般化的資訊隱藏問題與複合竊
聽信道問題給出了新的單發可達性結果，並涵蓋了多種既有問題作為特例。在
第 5 章中，我們擴展了泊松函數表示，設計出一種用於壓縮任意差分隱私方法
的新型結構，名為泊松隱私表示。泊松隱私表示是首個同時達成幾乎最佳的壓
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縮性能、精確無損的輸出分佈（從而保留原始隱私機制的統計性質，如無偏性
與高斯性）、並確保差分隱私的構造。我們同時也於多種應用上展示了泊松隱
私表示的實驗優勢。
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Chapter 1

Introduction

1.1 Background of One-Shot Information The-

ory

In information theory, which originated from Shannon [155], the goal is to de-

termine optimal and reliable transmission rates over channels, or optimal com-

pression rates for sources. Conventional information-theoretic analyses often rely

on the asymptotic equipartition property, typicality-based proofs, and the law

of large numbers to characterize the behavior of channels and sources in the

asymptotic regime [59].

Figure 1.1: Channel coding setting in the large blocklength limit.

Take channel coding as an example. Figure 1.1 illustrates the conventional

channel coding setting: a message M of length k is encoded to an input sequence

Xn = (X1, . . . , Xn); a decoder observes Y n = (Y1, . . . , Yn) through a discrete
1



memoryless channel, and outputs M̂ . Shannon’s channel coding theorem [155]

states that when the blocklength n is large, i.e., n → ∞, the channel capacity,

which is defined as the maximum communication rate k/n in bits per channel

transmissions such that P(M 6= M̂) can be made arbitrarily small [155], is given

by

C = max
PX

I(X;Y ), (1.1)

where I(X;Y ) is the mutual information between X and Y .

However, a critical practical issue is that packet lengths are never infinite

and can, in fact, be very short in real-world applications—for example, in ultra-

reliable low-latency communications [48]. Motivated by this, finite blocklength

information theory has been extensively studied over the past decade. The goal

is to provide nonasymptotic guarantees in scenarios where the number of channel

uses is limited [106, 149, 165, 174]. That is, in Figure 1.1, when n is finite, what

is the guarantee on the error probability P(M 6= M̂)?

An even more general scenario is the one-shot setting [63, 88, 117, 129, 149,

156, 159, 172, 178, 189], where the blocklength is assumed to be 1. That is,

each source and channel can be used only once. Note that “one-shot” does not

mean transmitting only 1 bit. Instead, it represents the most general case, where

the sources and channels can be arbitrary. This line of research is primarily

motivated by the generality of the setting: no assumptions are imposed on the

sources or channels (e.g., memorylessness, ergodicity, etc.). The difficulty is that

well-known techniques such as joint typicality and time sharing are not applicable.

This setting is more general than some finite-blocklength cases; for instance, the

finite-blocklength bounds in [188] do not seem to yield one-shot results due to

their use of the method of types.

We use the one-shot channel coding setting as an example in Figure 1.2. Upon

observing a messageM ∼ Unif[1 : L], the encoder producesX that is sent through
2



Figure 1.2: Channel coding setting in the one-shot regime.

the channel PY |X . The decoder observes Y and recovers M̂ with error probability

Pe := P{M 6= M̂}. Take the dependence testing bound by Polyanskiy, Poor and

Verdú [149] as an example, we have:

Pe ≤ E
[
min

{
L− 1

2
· 2−ιX;Y (X;Y ), 1

}]
, (1.2)

where ιX;Y (X;Y ) := log
(

dPX|Y (x|y)
dPX(x)

)
is the information density and dPX|Y (x|y)

dPX(x)
=

dPX|Y (·|y)
dPX

(x) denotes the Radon-Nikodym derivative.

We show how the one-shot result (1.2) recovers the asymptotic channel ca-

pacity (1.1). Consider L = 2nR, due to the channel being discrete memoryless

PY n|Xn(yn|xn) =
∏n

i=1 PY |X(yi|xi) in the absence of feedback, applying the one-

shot result (1.2) gives

Pe ≤ E
[
min{(2nR − 1) · 2−1−

∑n
i=1 ιX;Y (Xi;Yi), 1}

]
(1.3)

where (Xi;Yi) ∼ PXPY |X i.i.d. for i = 1, . . . , n.

When n → ∞, by the law of large numbers we know
∑n

i=1 ιX;Y (Xi;Yi) ≈

nI(X;Y ), and therefore by (1.3) we know Pe → 0 if R < I(X;Y ), which recovers

the channel capacity C in (1.1).

One-shot settings are general, and we expect good one-shot achievability re-

sults can imply existing (first-order and second-order) asymptotic results when

applied to memoryless sources and channels as above presents, or applied to sys-

tems with memory that behave ergodically [173]. For point-to-point channel cod-

ing, the achievability of the channel capacity is implied by the one-shot bounds by

Feinstein [63] and Shannon [156], which are precursors of the dependence testing

bound [149] in (1.2).
3



For settings more complex than the point-to-point channel, one-shot coding

schemes have also been studied. We briefly review existing one-shot results for

multi-user coding settings, and this part also appeared in [133]. In [172], one-shot

versions of the covering and packing lemmas have been proposed and applied to

various problems in multiuser information theory, for example, multiple access

channels and broadcast channels. In [189], a proof technique based on stochas-

tic likelihood encoders and decoders has been used to derive various one-shot

achievability results in several multi-user settings, including broadcast channels,

multiterminal source coding and multiple description coding. A one-shot mu-

tual covering lemma has been proposed in [129] for broadcast channels, which

recovers Marton’s inner bound. In [159], the multiterminal source coding inner

bound has been examined by a likelihood encoder. A finite-blocklength version

of the random binning technique has been used in [188] to derive second order

regions for broadcast channels. Recently, in [117], a technique called the Poisson

matching lemma has been introduced to prove various one-shot achievability re-

sults for a range of coding settings, and the achievable one-shot bounds improve

upon the best known one-shot bounds in several settings with shorter proofs.

This technique has been applied to unequal message protection [100], hypothesis

testing [81] and secret key generation [93]. The Poisson matching lemma is based

on the Poisson functional representation [118], which has been applied to various

fields recently, e.g., neural estimation [111], minimax learning [121] and differen-

tial privacy [132], together with other related techniques. We will provide more

details on the Poisson functional representation [118] in Chapter 2.
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1.2 Background of Differential Privacy

In this section we review the background of differential privacy, part of which also

appeared in [132].

In modern data science and wireless communications, there is a growing de-

pendence on large amounts of high-quality data, often generated by edge devices

(e.g., photos and videos captured by smartphones, or messages hosted by social

networks). However, this data inherently contains personal information, making

it susceptible to privacy breaches during acquisition, collection, or utilization. For

instance, despite the significant recent advancement in foundational models [20],

studies have shown that these models can accidentally memorize their training

data. This poses a risk where malicious users, even with just API access, can

extract substantial portions of sensitive information [27, 28].

In recent years, differential privacy (DP) [51] has emerged as a powerful frame-

work for safeguarding users’ privacy by ensuring that local data is properly ran-

domized before leaving users’ devices. With the local data X, a DP mechanism

A satisfies (ϵ, δ)-DP maps X to the output Z = A(X) ∈ Z, where A(·) is a

randomized function, such that for any neighboring (x, x′) and S ⊆ Z ,

Pr(Z ∈ S |X = x) ≤ eε Pr(Z ∈ S |X = x′) + δ, (1.4)

where neighboring (x, x′) are neighboring if they differ in a single data point.

This definition can be understood as follows: A differentially private mechanism

(satisfying (1.4)) guarantees that small changes in its input lead to only insignif-

icant changes in its output. If condition (1.4) is violated, an adversary could

infer whether specific data was included in the input. At a high level, differential

privacy prevents attackers from gaining significant knowledge about the input by

observing changes in the output [51].

Apart from privacy concerns, communicating local data from edge devices to
5



the central server often becomes a bottleneck in the system pipeline, especially

with high-dimensional data common in many machine learning scenarios. This

leads to the following fundamental question: how can we efficiently communicate

differentially privatized data?

Recent works have shown that a wide range of differential privacy mecha-

nisms can be “simulated” and “compressed” using shared randomness, resulting

in a “compressed mechanism” which has a smaller communication cost com-

pared to the original mechanism, while retaining the (perhaps slightly weakened)

privacy guarantee. This can be done via rejection sampling [65], importance

sampling [153, 168], or dithered quantization [85, 91, 108, 154, 185] with each ap-

proach having its own advantages and disadvantages. For example, importance-

sampling-based methods [153, 168] and the rejection-sampling-based method [65]

can simulate a wide range of privacy mechanisms; however, the output distribu-

tion of the induced mechanism does not perfectly match the original mechanism.

This is limiting in scenarios where the original mechanism is designed to satisfy

some desired statistical properties, e.g. it is often desirable for the local random-

izer to be unbiased or to be “summable” noise such as Gaussian or other infinitely

divisible distributions. Since the induced mechanism is different from the original

one, these statistical properties are not preserved. On the other hand, dithered-

quantization-based approaches [85, 91, 92, 108, 154, 185] can ensure a correct

simulated distribution, but they can only simulate additive noise mechanisms.

More importantly, dithered quantization relies on shared randomness between

the user and the server, and the server needs to know the dither for decoding.

This annuls the local privacy guarantee on the user data, unless we are willing

to assume a trusted aggregator [85], use an additional secure aggregation step

[91], or restrict attention to specific privacy mechanisms (e.g., one-dimensional

Laplace [154]).
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1.3 One-Shot Codes Meet Differential Privacy

In this section, we discuss the interplay between information theory—specifi-

cally, one-shot coding schemes—and differential privacy, which motivates the

studies presented in this thesis. Our goal is to develop a unified one-shot coding

framework that is applicable to both network information theory problems and

differential privacy mechanisms. We emphasize that our focus is on information-

theoretic coding schemes, rather than information-theoretic measures of privacy.

For discussions on the latter, we refer the reader to [170].

As discussed in Section 1.1, one-shot information theory addresses the most

fundamental setting, where no assumptions are made about the signal length

or the structure of the channel/source. Similar to the asymptotic analyses in

network information theory [59], the goal remains to investigate the fundamental

limits of signal transmission over noisy channels or source compression. To ensure

reliable message reconstruction—and thus high accuracy for downstream tasks—
effective one-shot coding schemes must be constructed to withstand noise. In

this thesis, we present various one-shot codes based on early works on Poisson

functional representation [117, 118].

However, when considering privacy, the requirement may initially appear

to conflict with the goal of communication: achieving differential privacy typ-

ically involves deliberately adding noise, which increases the message entropy

and reduces its compressibility. This tension is sometimes referred to as the

“communication-privacy-accuracy trilemma” [33]. Nevertheless, it has been shown

that through careful encoding and controlled noise injection for privacy, it is pos-

sible to simultaneously achieve communication efficiency and privacy, while still

maintaining accuracy for various tasks [2, 10, 33, 65]. In this sense, noise is

utilized as a tool for both compression and privacy.

One might initially think that controlling noise is difficult. However, the idea
7



of using random noise for source coding dates back to [190, 191], which proposed

additive noise as a tool for universally good lossy compression schemes. These

works represent early-stage studies of channel simulation. Channel simulation,

also known as channel synthesis or reverse channel coding, aims to simulate a

noisy channel using as few communication bits as possible [13, 40]. This ap-

proach has the potential to simultaneously achieve communication efficiency and

privacy. We will provide a more detailed review of channel simulation in Chap-

ter 5. Various channel simulation schemes—such as dithered quantization [191],

rejection sampling [82], and importance sampling (or more specifically, mini-

mal random coding) [86]—have been employed to compress differential privacy

mechanisms [25, 65, 92, 153, 154, 168, 185]. Readers are referred to [119] for a

comprehensive review.

Though we will first discuss one-shot codes based on the Poisson functional

representation [117, 118] for various network information theory problems, it is

worth noting that the Poisson functional representation is also a good channel

simulation scheme [118] (with some improvements in analysis found in [113, 115,

117]). With unlimited common randomness, it can provide the smallest known

bound on the expected length for one-shot channel simulation. However, it is a

deterministic mapping: the input, together with the common randomness, deter-

ministically determines the output. As a result, a small change in the input (in

the sense of differential privacy) can lead to a deterministic change in the com-

pressed output, making this method unsuitable for directly ensuring privacy. To

address this issue, we propose a way to randomize the Poisson functional repre-

sentation. This randomized variant will be shown to preserve differential privacy

while achieving a compression size close to the optimal.

In summary, though at first glance the goals of privacy protection and effi-

cient communication may appear to be in conflict, recent works have shown that
8



this “paradox” can be resolved, and channel simulation emerges as a promising

candidate for achieving both. The various one-shot codes proposed in this thesis

are based on the Poisson functional representation [118], which is also a state-

of-the-art channel simulation scheme. Although its deterministic nature poses

challenges for direct application to differential privacy mechanisms, we show that

it can be randomized to provide privacy protection. From this unified perspec-

tive, the Poisson functional representation serves as a bridge between one-shot

information theory and differential privacy. We note that while importance sam-

pling has also been used in both network information theory [147] and differential

privacy [153, 168], it is not exact; that is, the output distribution is distorted,

resulting in only approximate simulation. We will elaborate on this distinction

in Chapter 5.

1.4 Our Contributions

1.4.1 Contributions in Chapter 3

In Chapter 3, we present a unified one-shot coding framework designed for the

communication and compression of messages among multiple nodes across a gen-

eral acyclic noisy network. Our setting can be seen as a one-shot version of the

acyclic discrete memoryless network studied by Lee and Chung [110], and noisy

network coding studied by Lim, Kim, El Gamal and Chung [126]. We design a

proof technique, called the exponential process refinement lemma, that is rooted

in the Poisson matching lemma by Li and Anantharam, and can significantly

simplify the analyses of one-shot coding over multi-hop networks. Our one-shot

coding theorem not only recovers a wide range of existing asymptotic results,

but also yields novel one-shot achievability results in different multi-hop network

information theory problems, such as compress-and-forward and partial-decode-
9



and-forward bounds for a one-shot (primitive) relay channel, and a bound for

one-shot cascade multiterminal source coding. In a broader context, our frame-

work provides a unified one-shot bound applicable to any combination of source

coding, channel coding and coding for computing problems. This chapter is based

on [133].

1.4.2 Contributions in Chapter 4

In Chapter 4, we present one-shot information-theoretic analyses of two secrecy

problems: a generalization of the information hiding problem [144] and the com-

pound wiretap channel [123]. The former admits a game-theoretic formulation,

where one party (the information hider and decoder) seeks to embed secret mes-

sages into a host signal for later reconstruction, while the opposing party (an

attacker) attempts to remove or degrade the embedded information. The lat-

ter generalizes Wyner’s wiretap channel by allowing multiple potential channel

states, making it more suitable for the rapidly changing characteristics of modern

wireless communications. Although these two secrecy problems seem unrelated,

we study both utilizing a covering argument and similar techniques under a uni-

fied framework. We derive one-shot achievability results for both problems using

techniques based on the Poisson matching lemma, which enables us to handle

both discrete and continuous cases. We show that our one-shot results readily re-

cover existing asymptotic results. Unlike previous asymptotic results, ours apply

to any source distribution and any class of channels, not necessarily memoryless

or ergodic. This chapter is partially based on [134].
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1.4.3 Contributions in Chapter 5

In Chapter 5, we introduce a novel construction, called Poisson private repre-

sentation (PPR), designed to compress and simulate any local randomizer while

ensuring local differential privacy, hence reduce the communication cost of dif-

ferential privacy mechanisms, Unlike previous simulation-based local differential

privacy mechanisms, PPR exactly preserves the joint distribution of the data

and the output of the original local randomizer. Hence, the PPR-compressed

privacy mechanism retains all desirable statistical properties of the original pri-

vacy mechanism such as unbiasedness and Gaussianity. Moreover, PPR achieves

a compression size within a logarithmic gap from the theoretical lower bound.

Using the PPR, we give a new order-wise trade-off between communication, ac-

curacy, central and local differential privacy for distributed mean estimation.

Experiment results on distributed mean estimation show that PPR consistently

gives a better trade-off between communication, accuracy and central differential

privacy compared to the coordinate subsampled Gaussian mechanism, while also

providing local differential privacy. This chapter is based on [132].
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Chapter 2

Poisson Functional

Representation

In this chapter, we review the Poisson functional representation [118] and discuss

some technical background on related schemes. We begin by introducing our

notations.

2.1 Notations

We assume the logarithm and entropy are to the base 2 unless otherwise stated,

and logarithm to the base e is denoted as ln(x). For a statement S, we use 1{S}

to denote its indicator, i.e., 1{S} is 1 if S holds and otherwise 1{S} = 0. δa

denotes the degenerate distribution P{X = a} = 1.

We use [i..j] to denote {i, i+ 1, . . . , j} and [j] := [1..j]. For a set S ⊆ [k] and

random sequence U1, . . . , Uk, we write Uk := (U1, . . . , Uk), US := (Uj)j∈S . For

two random variables X,Y , the information density is defined as

ιX;Y (x; y) = log
(dPX|Y (x|y)

dPX(x)

)
,

13



where dPX|Y (x|y)
dPX(x)

denotes the Radon-Nikodym derivative. For two random vari-

ablesX,Y , we sometimes omit the subscript and write ι(X;Y ) instead of ιX;Y (X;Y )

if the random variables are clear from the context. In discrete case, the condi-

tional information density is defined to be

ιX;Y |Z(x; y|z) := log
(

PX,Y |Z(x, y|z)
PX|Z(x|z)PY |Z(y|z)

)
,

The total variation (TV) distance between two distributions P,Q over X is

‖P −Q‖TV := supA⊆X measurable |P (A)−Q(A)|.

For two distributions P and Q, we write P � Q to denote that P is absolutely

continuous with respect to Q.

2.2 Poisson Functional Representation

In this section, we introduce the Poisson Functional Representation [118] and the

Poisson Matching Lemma [117], which serve as the building blocks of this thesis.

The Poisson functional representation was introduced in [118] as a channel

simulation scheme, where a strong functional representation lemma is proved.

Related constructions for Monte Carlo simulations can be found in [135]. To-

gether with other techniques, the Poisson functional representation [118] has

been applied to various fields, including neural estimation [111] and minimax

learning [120]. As discussed in [70], the Poisson functional representation can be

viewed as a certain variant of the A∗ sampling [135, 136], and hence an optimized

version with better runtime for one-dimensional unimodal distribution has been

proposed in [70]. A greedy-search version can be found in [68].

Based on the Poisson functional representation, the Poisson Matching Lemma

was proposed in [117], and it has been shown to improve upon previously known

one-shot bounds in various settings with simpler analyses. Recent applications of
14



the Poisson Matching Lemma include unequal message protection [100], hypoth-

esis testing [81], and secret key generation [93].

We start with the discrete case, which we refer to as the exponential functional

representation [118].

Definition 2.2.1 (Exponential Functional Representation [118]). Consider a fi-

nite set U . Let U := (Zu)u∈U be i.i.d. Exp(1) random variables.1 Given a

distribution P over U ,

UP := argminu

Zu

P (u)
(2.1)

is called the exponential functional representation [118].

By [118], we have UP ∼ P .

The exponential functional representation [118] is designed for finite alpha-

bets, which is the case in Chapter 3. When the space is continuous, as in Chap-

ter 4 and Chapter 5, a generalization via Poisson processes is utilized [117, 118].

Further discussions and detailed derivations of the connection between the two

cases can be found in [117, 119]; we omit them here. We introduce the general-

ization, called the Poisson functional representation [118], as follows.

Definition 2.2.2 (Poisson Functional Representation [118]). Let (Ti)i be a Pois-

son process with rate 1 (i.e., T1, T2 − T1, T3 − T2, . . .
iid∼ Exp(1)), independent of

Ūi
iid∼ Q for i = 1, 2, . . ., and we denote U := (Ūi)i. (Ūi, Ti)i is a Poisson process

with intensity measure Q×λ[0,∞) [109], where λ[0,∞) is the Lebesgue measure over

[0,∞). Fix any distribution P over U that is absolutely continuous with respect

to Q. Let

T̃i := Ti ·
(dP
dQ(Ūi)

)−1

, (2.2)

where dP
dQ(·) is the Radon-Nikodym derivative. By the mapping theorem [109],

(Ūi, T̃i) is a Poisson process with intensity measure P × λ[0,∞). Then the Poisson
1Exp(1) random variables follow an exponential distribution with rate parameter 1.
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functional representation [118] selects

UP := ŪK ,

where

K := argminiT̃i.

Note that since the Ti’s are continuous, with probability 1, there do not exist

two equal values among T̃i’s. The Poisson functional representation [118] holds

for general Q which may be discrete or continuous.

The Poisson functional representation [118] selects a sample following the

target distribution P among samples from another distribution Q, i.e., UP ∼ P .

It draws a random sequence (Ūi)i from Q and a sequence of times (Ti)i according

to a Poisson process. If we select the sample Ūi with the smallest Ti, then the

selected sample will follow distribution Q. To obtain a sample from P instead,

we multiply the time by the factor (dP
dQ(Ūi))

−1 in (2.2) to give T̃i, so the Ūi with

the smallest T̃i will follow P .

The Poisson functional representation [118] was originally developed to prove

the strong functional representation lemma, and possibly tighter guarantees via

different analyses can be found in [113, 115].

The way this Poisson process is used in communication settings (e.g., in [117])

is that the encoder would query the process using the prior distribution of the

signal to obtain the signal to be sent, and the decoder would query using the

posterior distribution of the signal given the noisy observation to obtain the

message. There is no error in the communication if the two queries return the

same sample. The probability of error can be bounded by the Poisson matching

lemma [117], which will be discussed in Section 2.3.
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2.3 Poisson Matching Lemma

In this section, we introduce a technique that is based on the Poisson Functional

Representation, called the Poisson matching lemma [117], which has been shown

to be able to provide good one-shot achievability results on a large class of network

information theory problems [117].

The Poisson matching lemma has been shown to be quite useful in proving

one-shot achievability results of network information theory [117, 133]. It is rooted

in the Poisson functional representation [118] that is reviewed as follows.

Lemma 2.3.1 (Poisson matching lemma [117]). Consider two distributions P1, P2 �

Q. Almost surely, we have

P
(
UP2 6= UP1

∣∣UP1

)
≤ 1−

(
1 +

dP1

dP2

(UP1)
)−1

.

The Poisson matching lemma [117] provides a bound on the probability of

mismatch between the Poisson functional representations applied on different

distributions. Various information theory problems have been studied by using

the Poisson matching lemma [117]. In chapter 3, we will extend it to a tool that

can provide one-shot achievability results over arbitrary acyclic noisy networks,

and hence recover many one-shot results in [117].

2.4 Discussions on Other Existing Techniques

Compared to the one-shot coding scheme in [189], the Poisson matching lemma

utilizes a Poisson process to create a codebook, instead of the conventional i.i.d.

random codebook [189], and each codeword is assigned a bias Ti. The scheme is

thus a biased maximum likelihood decoder, rather than a stochastic decoder as

in [189]. The idea of using a biased, or soft, coding scheme has been extended to

linear codes, known as weighted parity-check codes; see [127, 128].
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Except for the one-shot coding scheme based on Poisson functional representa-

tion [117, 118], other unified frameworks for one-shot coding include the schemes

based on random binning [187, 188, 189], the likelihood encoder [159], and im-

portance sampling [147]. Other one-shot coding schemes [63, 88, 156, 172, 178]

have been reviewed in detail in Chapter 1; here, we discuss some connections be-

tween one-shot codes and channel simulation via the likelihood encoder [159] and

importance sampling [147], since we will utilize channel simulation to compress

differential privacy mechanisms in Chapter 5.

As mentioned above, the Poisson functional representation can be viewed

as a variant of A* sampling [135, 136], and a very useful property is that the

output sample follows exactly the input distribution. This can also be understood

as a remote sampling problem; we refer readers to [119] for a comprehensive

explanation. The Poisson functional representation can be used to prove the

strong functional representation lemma [118]: to simulate a channel PY |X , the

communication cost (expected number of bits) required is bounded by

I(X;Y ) + log
(
I(X;Y ) + 1

)
+ 5,

which with some finer analyses can be improved toI(X;Y ) + log
(
I(X;Y ) + 2

)
+

3 [113, 115].

If one considers greedy rejection sampling for channel simulation, a weaker

guarantee has been proved by [83], and improved by [22], as follows:

I(X;Y ) + log
(
I(X;Y ) + 1

)
+ c,

where c is an unspecified constant. The guarantee by using greedy rejection

sampling was later improved by [72] to

I(X;Y ) + log
(
I(X;Y ) + log(4e)

)
+ log(4e) + 1.

Another popular sampling scheme is importance sampling, which was consid-

ered by [44] for asymptotic channel simulation, and later dubbed the likelihood
18



encoder [159] for one-shot coding. In machine learning, a similar scheme named

minimal random coding was also studied by [86], where it was applied to model

compression and later to lossy image compression [69]. Besides the likelihood

encoder, a recent work [147] used importance sampling (an importance matching

lemma that shares some similarity with the Poisson matching lemma [117]) for

coding in information theory, and it has the potential to be extended to other

information theory problems. We would like to emphasize here that a major

difference compared to the Poisson functional representation is that the output

sample does not exactly follow the input distribution.

This difference also appears in the study of compressing differential privacy

mechanisms. Compression of differential privacy mechanisms can be viewed as

a channel simulation problem, where the channel is subject to an additional pri-

vacy constraint. Importance sampling (or more specifically, minimal random cod-

ing [86]) has been used for compressing differential privacy mechanisms [153, 168].

However, as mentioned in the previous paragraph, since minimal random coding

is not exact, the output distribution is only approximate. On the other hand,

rejection sampling can also be utilized [25, 65], although the communication cost

and privacy guarantees were not close to optimal. In Chapter 5, we will utilize

a variant of the Poisson functional representation [118] to compress differential

privacy mechanisms.

In summary, importance sampling has been applied in both one-shot coding

and the compression of differential privacy mechanisms. In contrast, the Pois-

son functional representation [118] offers an exact simulation framework with

close-to-optimal communication cost guarantees. In the following chapter, we

will demonstrate how to extend the construction of the Poisson functional repre-

sentation to various problems, ensuring good performance.
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Chapter 3

One-Shot Coding over General

Noisy Networks

3.1 Overview

In this chapter, we study a general class of networks, which we call acyclic dis-

crete networks, where there are N nodes connected by noisy channels in an acyclic

manner. Each node can play the role of an encoder or a decoder (or both) in

source coding or channel coding settings. This is a one-shot version of the asymp-

totic acyclic discrete memoryless network studied by Lee and Chung [110], and

includes a wide range of settings as special cases, such as source and channel

coding, primitive relay channel [55, 56, 59, 101, 142], Gelfand-Pinsker [74, 89],

relay-with-unlimited-look-ahead [57, 58], Wyner-Ziv [180, 182], coding for com-

puting [184], multiple access channels [4, 5, 125], broadcast channels [138] and

cascade multiterminal source coding [42]. In a broader context, our one-shot

achievability results are general enough to be applicable to any combination of

source coding, channel coding and coding for computing problems. This chapter

is based on [133].
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In order to alleviate the difficulty of keeping track of a large number of

auxiliary random variables in a general N -node network, we propose a tool

called the exponential process refinement lemma based on the Poisson match-

ing lemma [117],1 which simplifies the analyses of the evolution of the posterior

distribution of the sources, messages and/or auxiliary random variables at the

decoder. We utilize the lemma to prove a one-shot achievability result for gen-

eral acyclic discrete networks, which recovers existing one-shot results in a range

of settings in [117, 172, 178, 189], and also give novel one-shot results for various

multi-hop settings, namely primitive relay channels [55, 56, 59, 101, 142], relay-

with-unlimited-look-ahead [57, 58], and cascade multiterminal source coding [42].

The chapter is organized as follows. We present our proof technique, called

the exponential process refinement lemma, in Section 3.2. We describe our gen-

eral acyclic discrete network in Section 3.3, and prove our main theorem in Sec-

tion 3.4. In Section 3.5, we use a one-shot relay channel and related settings to

elaborate our coding scheme in detail. We then discuss a novel one-shot cascade

multiterminal source coding problem in Section 3.6. We also show our coding

scheme provides one-shot bounds on various network information theory settings

in Section 3.7.

3.2 Exponential Process Refinement Lemma

Recall we have introduced the Exponential functional representation [118] in

Chapter 2. We briefly review it here together with the Poisson matching lemma [117]

1We only present the discrete case in this chapter for the sake of simplicity. Hence, instead

of Poisson processes, we may use an i.i.d. exponential processes instead [118]. While we expect

the results to be extended to the continuous case, this is left for future studies. For the use

of Poisson functional representation in continuous case in other settings, see Chapter 4 and

Chapter 5.
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for the sake of completeness. We then design a tool for proving one-shot achiev-

ability results over noisy multi-hop networks based on the Poisson matching

lemma, called the exponential process refinement lemma.

Consider a finite set U . Let U := (Zu)u∈U be i.i.d. Exp(1) random variables.2

Given a distribution P over U ,

UP := argminu

Zu

P (u)
(3.1)

is called the exponential functional representation in Chapter 2.3

As explained in Chapter 2 and also [118], we have UP ∼ P .

We can generalize this by letting UP (1), . . . ,UP (|U|) ∈ U be the elements of

U sorted in ascending order of Zu/P (u):

ZUP (1)

P (UP (1))
≤ · · · ≤

ZUP (|U|)

P (UP (|U|))
.

We break ties arbitrarily and treat 1/0 = ∞. This is similar to the mapped

Poisson process in the generalized Poisson matching lemma [117], though unlike

[117], UP (1), . . . ,UP (|U|) is not an i.i.d. sequence following P . Write U−1
P : U →

[|U|] for the inverse function of i 7→ UP (i). The following is a direct corollary of

the generalized Poisson matching lemma [117].

Lemma 3.2.1. For distributions P,Q over U , we have the following almost surely:

E
[
U−1

Q (UP )
∣∣∣UP

]
≤ P (UP )

Q(UP )
+ 1.

We now define a convenient tool.
2When the space U is continuous, a Poisson process is used in [117, 118].
3In [118], even for discrete case using exponential random variables, (3.1) was still called

the Poisson functional representation. Here and similar to [119] we call it exponential func-

tional representation to distinguish it with the Poisson functional representation that works for

continuous cases in Chapter 4 and Chapter 5.
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Definition 3.2.2 (Refining a distribution by an exponential process). For a joint

distribution QV,U over V ×U , the refinement of QV,U by U, denoted as QU
V,U , is a

joint distribution

QU
V,U(v, u) :=

QV (v)

U−1
QU|V (·|v)(u)

∑|U|
i=1 i

−1

for all (v, u) in the support of QV,U , where QV is the V -marginal of QV,U and QU |V

is the conditional distribution of U given V . When V = ∅, the above definition

becomes

QU
U(u) =

1

U−1
QU

(u)
∑|U|

i=1 i
−1
.

While the exponential functional representation UQU
(which only gives one

value of U) is used for the unique decoding of U , the refinement QU
U(u) is for

the soft decoding of U , which gives a distribution over U , with UQU
having the

largest probability. This is useful in non-unique decoding. For example, if we

want to decode U1 uniquely, while utilizing U2 via non-unique decoding, we can

first obtain the distribution (U2)QU2
, and then compute the marginal distribution

of U1 in (U2)QU2
PU1|U2 and use this marginal distribution to recover U1 via the

exponential functional representation.

Loosely speaking, if the distribution QV,U represents our “prior distribution”

of (V, U), then the refinement QU
V,U is our updated “posterior distribution” after

taking the exponential process U into account. In multiterminal coding settings

that a node decodes multiple random variables, the prior distribution of those

random variables will be refined by multiple exponential processes. To keep

track of the evolution of the “posterior probability” of the correct values of those

random variables through the refinement process, we use the following lemma,

called the exponential process refinement lemma. Although its proof still relies

on the Poisson matching lemma [117], it significantly simplifies our analyses.
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Lemma 3.2.3 (Exponential Process Refinement Lemma). For a distribution P

over U and a joint distribution QV,U over a finite V × U , for every v ∈ V, we

have, almost surely,

E
[

1

QU
V,U(v,UP )

∣∣∣∣UP

]
≤ ln |U|+ 1

QV (v)

(
P (UP )

QU |V (UP |v)
+ 1

)
.

Proof. We have

E
[

1

QU
V,U(v,UP )

∣∣∣∣UP

]
(a)
= E

[U−1
QU|V (·|v)

(UP )
∑|U|

i=1 i
−1

QV (v)

∣∣∣∣∣UP

]
(b)

≤
∑|U|

i=1 i
−1

QV (v)

(
P (UP )

QU |V (UP |v)
+ 1

)
(c)

≤ ln |U|+ 1

QV (v)

(
P (UP )

QU |V (UP |v)
+ 1

)
,

where (a) is by Definition 3.2.2, (b) is by Lemma 3.2.1 and (c) is by
∑n

i=1 i
−1 ≤∫ n

1
x−1dx+ 1 = lnn+ 1.

3.3 Network Model

We describe a general N -node network model, which is the one-shot version of the

acyclic discrete memoryless network (ADMN) [110]. There are N nodes labelled

1, . . . , N . Node i observes Yi ∈ Yi and produces Xi ∈ Xi (while we assume Xi,Yi

are finite). Unlike conventional asymptotic settings (e.g. [110]), here Xi is only

one symbol, instead of a sequence (Xi,1, . . . , Xi,n). The transmission is performed

sequentially, and each Yi is allowed to depend on all previous inputs and outputs

(i.e., X i−1, Y i−1) in a stochastic manner, as shown in Figure 3.1. Therefore, we

can formally define an N-node acyclic discrete network (ADN) as a collection of

channels (PYi|Xi−1,Y i−1)i∈[N ], where PYi|Xi−1,Y i−1 is a conditional distribution from
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(
∏i−1

j=1Xj) × (
∏i−1

j=1 Yj) to Yi. In particular, Y1 follows PY1 and does not depend

on any other random variable. The asymptotic ADMN [110] can be considered as

the n-fold ADN (P n
Yi|Xi−1,Y i−1)i∈[N ], where P n

Yi|Xi−1,Y i−1 denotes the n-fold product

conditional distribution (i.e., n copies of a memoryless channel), and we take the

blocklength n→∞.

Figure 3.1: Acyclic discrete memoryless network.

We remark that, similar to the asymptotic unified random coding bound [110],

the Xi’s and Yi’s can represent sources, states, channel inputs, outputs and mes-

sages in source coding and channel coding settings. For example, for point-to-

point channel coding, we take Y1 to be the message, which the encoder (node

1) encodes into the channel input X1, which in turn is sent through the channel

PY2|X1 . The decoder (node 2) observes Y2 and outputs X2, which is the decoded

message. For lossless source coding, Y1 is the source, X1 = Y2 is the description

by the encoder, and X2 is the reconstruction.

Figure 3.2: (a) Channel coding. (b) Source coding.

We give the definition of a coding scheme below.

Definition 3.3.1. A deterministic coding scheme consists of a sequence of en-
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coding functions (fi)i∈[N ], where fi : Yi → Xi. For i = 1, . . . , N , the following

operations are performed:

• Noisy channel. The output Ỹi is generated conditional on X̃ i−1, Ỹ i−1

according to PYi|Xi−1,Y i−1 . For i = 1, Ỹ1 ∼ PY1 can be regarded as a source

or a channel state.

• Node operation. Node i observes Ỹi and outputs X̃i = fi(Ỹi).

We sometimes allow an additional unlimited public randomness available to

all nodes.

Definition 3.3.2. A public-randomness coding scheme for the network consists

of a pair (PW , (fi)i∈[N ]), where PW is the distribution of the public randomness

W ∈ W available to all nodes and fi : Yi ×W → Xi is the encoding function of

node i mapping its observation Yi and the public randomness W to its output

Xi. The operations are as follows. First, generate W ∼ PW . For i = 1, . . . , N ,

generate Ỹi conditional on X̃ i−1, Ỹ i−1 according to PYi|Xi−1,Y i−1 , and take X̃i =

fi(Ỹi,W ).

We do not impose any constraint on the public randomness W . In reality, to

carry out a public-randomness coding scheme, the nodes share a common ran-

dom seed to initialize their pseudorandom number generators before the scheme

commences.

We use X̃i, Ỹi to denote the actual random variables from the coding scheme.

In contrast, Xi, Yi usually denote the random variables following an ideal distribu-

tion. For example, in channel coding, the ideal distribution is Y1 = X2 ∼ Unif[L]
(i.e., the message is decoded without error), independent of (X1, Y2) ∼ PX1PY2|X1 .

If we ensure that the actual X̃2, Ỹ 2 is “close to” the idealX2, Y 2, this would imply

that Ỹ1 = X̃2 with high probability as well, giving a small error probability.
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The goal (the “achievability”) is to make the actual joint distribution PX̃N ,Ỹ N

“approximately as good as” the ideal joint distribution PXN ,Y N . If we have an

“error set” E ⊆
(∏N

i=1Xi

)
×
(∏N

i=1 Yi

)
that we do not want (X̃N , Ỹ N) to fall

into (e.g., for channel coding, E is the set where Ỹ1 6= X̃2, i.e., an error occurs; for

lossy source coding, E is the set where d(Ỹ1, X̃2) > D, i.e., the distortion exceeds

the limit), we want

P
(
(X̃N , Ỹ N) ∈ E

)
≲ P

(
(XN , Y N) ∈ E

)
. (3.2)

If PX̃N ,Ỹ N is close to PXN ,Y N in total variation distance, i.e.,

δTV
(
PXN ,Y N , PX̃N ,Ỹ N

)
≈ 0, (3.3)

then (3.2) is guaranteed. For public-randomness coding, we show that (3.3) can be

achieved, which can be seen as a channel simulation [13, 40] or a coordination [41]

result. For deterministic coding, since the node operations are deterministic, there

might not be sufficient randomness to make PX̃N ,Ỹ N close to PXN ,Y N , and hence

we use the error bound in (3.2).

3.4 Main Theorem for Acyclic Discrete Networks

We show a one-shot achievability result for ADN via public-randomness coding

scheme.

Theorem 3.4.1. Fix any ADN (PYi|Xi−1,Y i−1)i∈[N ]. For any collection of indices

(ai,j)i∈[N ],j∈[di] where (ai,j)j∈[di] is a sequence of distinct indices in [i− 1] for each

i, any sequence (d′i)i∈[N ] with 0 ≤ d′i ≤ di and any collection of conditional dis-

tributions (PUi|Yi,U
′
i
, PXi|Yi,Ui,U

′
i
)i∈[N ] (where U i,S := (Uai,j)j∈S for S ⊆ [di] and

U
′
i := U i,[d′i]

), which induces the joint distribution of XN , Y N , UN (the “ideal dis-

tribution”), there exists a public-randomness coding scheme (PW , (fi)i∈[N ]) such
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that the joint distribution of X̃N , Ỹ N induced by the scheme (the “actual distri-

bution”) satisfies

δTV
(
PXN ,Y N , PX̃N ,Ỹ N

)
≤ E

[
min

{ N∑
i=1

d′i∑
j=1

Bi,j, 1

}]
,

where

Bi,j := γi,j

di∏
k=j

(
2
−ι(U i,k;U i,[di]\[j..k],Yi)+ι(U i,k;U

′
ai,k

,Yai,k
)
+ 1{k>j}

)
(3.4)

such that4

γi,j :=

di∏
k=j+1

(
ln |Uai,k |+ 1

)
.

The sequences (ai,j)j control which auxiliaries Uj node i decodes and in which

order. Node i uniquely decodes U ′
i = (Uai,j)j∈[d′i] while utilizing (Uai,j)j∈[d′i+1..di]

by non-unique decoding via the exponential process refinement (Definition 3.2.2).

For brevity, we say “the decoding order of node i is U i,1, . . . , U i,d′i
, U i,d′i+1?, . . . , U i,di?”

where “?” means the random variable is only used in non-unique decoding. Node

i decodes U ′
i, creates its own Ui by using the exponential functional representation

on PUi|Yi,U
′
i
, and generates Xi from PXi|Yi,Ui,U

′
i
.

We also have the following result for deterministic coding schemes.

Theorem 3.4.2. Fix any ADN (PYi|Xi−1,Y i−1)i∈[N ]. For any (ai,j)i∈[N ],j∈[di], (d′i)i∈[N ],

(PUi|Yi,U
′
i
, PXi|Yi,Ui,U

′
i
)i∈[N ] as defined in Theorem 3.4.1, which induce the joint dis-

tribution of XN , Y N , UN , and any set E ⊆
(∏N

i=1Xi

)
×
(∏N

i=1 Yi

)
, there is a

deterministic coding scheme (fi)i∈[N ] such that X̃N , Ỹ N induced by the scheme

satisfy

P
(
(X̃N , Ỹ N) ∈ E

)
4Note that the logarithmic terms γi,j do not affect the first and second order results.
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≤ E
[
min

{
1
{
(XN , Y N) ∈ E

}
+

N∑
i=1

d′i∑
j=1

Bi,j, 1

}]
, (3.5)

where Bi,j is defined in Theorem 3.4.1.

Theorem 3.4.1 implies the following result for the asymptotic ADMN [110] by

directly applying the law of large numbers.

Corollary 3.4.3. Fix any ADN (PYi|Xi−1,Y i−1)i∈[N ]. Fix any (ai,j)i∈[N ],j∈[di],

(d′i)i∈[N ], (PUi|Yi,U
′
i
, PXi|Yi,Ui,U

′
i
)i∈[N ] as defined in Theorem 3.4.1, which induces

the joint distribution of XN , Y N , UN . If for every i ∈ [N ], j ∈ [d′i],

I(U i,j;U i,[di]\{j}, Yi)− I(U i,j;U
′
ai,j
, Yai,j) >

di∑
k=j+1

(
max

{
I(U i,k;U

′
ai,k
, Yai,k)− I(U i,k;U i,[di]\[j..k], Yi), 0

})
,

then there is a sequence of public-randomness coding (indexed by n) for the n-

fold ADN (P n
Yi|Xi−1,Y i−1)i∈[N ] such that the induced X̃N,n, Ỹ N,n (write X̃N,n =

(X̃i,j)i∈[N ],j∈[n]) satisfy

lim
n→∞

δTV
(
P n
XN ,Y N , PX̃N,n,Ỹ N,n

)
= 0. (3.6)

While this result is not as strong as the general asymptotic result in [110],

a one-shot analogue of [110] will likely be significantly more complicated than

Theorem 3.4.1. We choose to present Theorem 3.4.1 since it is simple but already

general and powerful enough to give a wide range of tight one-shot results.

3.5 One-shot Relay Channel

To explain our scheme, we first discuss a one-shot relay channel in Figure 3.3.

An encoder observes M ∼ Unif[L] and outputs X, which is passed through the

channel PYr|X . The relay observes Yr and outputs Xr. Then (X,Xr, Yr) is passed
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through the channel PY |X,Xr,Yr . The decoder observes Y and recovers M̂ . For

generality, we allow Y to depend on all of X,Xr, Yr, and Xr may interfere with

(X,Yr), which can happen if the relay outputs Xr instantaneously or the channel

has a long memory, or it is a storage device. It is a one-shot version of the

relay-without-delay and relay-with-unlimited-look-ahead [57, 58], and is an ADN

by taking Y1 = M , X1 = X, Y2 = Yr, X2 = Xr, Y3 = Y , and X3 = M (in the

ideal distributions).

In case if Y = (Y ′, Y ′′) consists of two components and the channel PY |X,Xr,Yr =

PY ′|X,YrPY ′′|Xr can be decomposed into two orthogonal components (so Xr does

not interfere with (X,Yr)), this becomes the one-shot version of the primitive

relay channel [55, 56, 59, 101, 142] since the n-fold version of this ADN (with

n → ∞) is precisely the asymptotic primitive relay channel. However, the n-

fold version of the ADN in Figure 3.3 in general is not the conventional relay

channel [36, 59, 171] (it is the relay-with-unlimited-look-ahead instead). The

conventional relay channel, due to its causal assumption that the relay can only

look at past Yr,t’s, has no one-shot counterpart.

Figure 3.3: One-shot relay channel setting.

We use the following corollary of Theorem 3.4.2 to demonstrate the use of the

exponential process refinement lemma (Lemma 3.2.3).

Corollary 3.5.1. For any PX , PU |Yr, function xr(yr, u), there is a determinis-

tic coding scheme for the one-shot relay channel such that the error probability
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satisfies

Pe ≤ E
[
min

{
γL2−ι(X;U,Y )

(
2−ι(U ;Y )+ι(U ;Yr) + 1

)
, 1
}]
, (3.7)

where (X,Yr, U,Xr, Y ) ∼PXPYr|XPU |Yrδxr(Yr,U)PY |X,Yr,Xr, and γ := ln |U|+ 1.

Proof. For the sake of demonstration, we first give a detailed proof via the

exponential process refinement lemma without invoking Theorem 3.4.2. Let

U1 := (X,M), U2 := U . Let U1, U2 be two independent exponential processes,

which serve as the “random codebooks”. The encoder (node 1) uses the expo-

nential functional representation (3.1) to compute U1 = (U1)PU1
×δM and outputs

X-component of U1. The relay (node 2) computes U2 = (U2)PU2|Yr (·|Yr) and out-

puts Xr = xr(Yr, U2). Note that X,Yr, U2, Xr, Y follow the ideal distribution in

the corollary due to the property of exponential functional representation, and

hence we write Xr instead of X̃r. The decoder (node 3) observes Y , and performs

the following steps.

1. Refine PU2|Y (·|Y ) (written as PU2|Y for brevity) to QU2 := PU2

U2|Y using Def-

inition 3.2.2. By the exponential process refinement lemma (Lemma 3.2.3,

with V = ∅),

E
[

1

QU2(U2)

∣∣∣∣U2, Y, Yr

]
≤ (ln |U2|+ 1)

(
PU2|Yr(U2)

PU2|Y (U2)
+ 1

)
.

2. Compute the joint distribution QU2PU1|U2,Y over U1 × U2, the semidirect

product between QU2 and PU1|U2,Y (·|·, Y ). Let its U1-marginal be Q̃U1 .

3. Let Ũ1 = (U1)Q̃U1
×PM

, and output its M -component.

Let A := (X,Yr, U2, Xr, Y,M) and γ := ln |U2|+ 1,

P(Ũ1 6= U1 |A)
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(a)

≤ E
[
min

{
PU1(U1)δM(M)

PU1|U2,Y (U1|U2, Y )QU2(U2)PM(M)
, 1

} ∣∣∣∣A]
(b)
= E

[
min

{
L PU1(U1)

PU1|U2,Y (U1|U2, Y )QU2(U2)
, 1

} ∣∣∣∣A]
(c)

≤ min
{

L PU1(U1)

PU1|U2,Y (U1|U2, Y )
γ

(
PU2|Yr(U2)

PU2|Y (U2)
+ 1

)
, 1

}
= min

{
γL2−ι(X;U2,Y )

(
2−ι(U2;Y )+ι(U2;Yr) + 1

)
, 1
}
,

where (a) is by the generalized Poisson matching lemma [117] (Lemma 3.2.1),

(b) is by δM(M) = 1 and PM(M) = 1/L, and (c) is by step 1) and Jensen’s

inequality. Taking expectation over A gives the desired error bound. Although

the codebooks U1, U2 are random (so this is a public-randomness scheme), we

can convert it to a deterministic scheme by fixing one particular choice (u1, u2)

that satisfies the error bound. Alternatively, Theorem 3.4.2 allows us to derive

bounds for general acyclic discrete networks in a systematic manner, without

going through the above arguments for every specific ADN. To prove Corollary

3.5.1, we can invoke Theorem 3.4.2 on the ADN with nodes 1, 2, 3, with inputs

Yi’s, outputs Xi’s, auxiliaries Ui’s and the terms Bi,j’s as follows:

1. Node 1 has input Y1 =M , output X1 = X and auxiliary U1 = (X,M).

2. Node 2 has input Y2 = Yr, output X2 = Xr and auxiliary U2 = U .

3. Node 3 has input Y3 = Y , output X3 = M and decodes with the order

“U1, U2?”. Applying Theorem 3.4.2 (note that d3 = 2 and d′3 = 1), we have

B3,1 = (ln |U2|+ 1)L2−ι(X;U2,Y )
(
2−ι(U2;Y )+ι(U2;Yr) + 1

)
,

and hence we obtain the bound (3.7) by invoking Theorem 3.4.2.
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Corollary 3.5.1 yields the following asymptotic achievable rate:

R ≤ I(X;U, Y )−max
{
I(U ;Yr)− I(U ;Y ), 0

}
for some PU |Yr and function xr(yr, u2).

We also consider a one-shot primitive relay channel (as shown in Figure 3.4),

where PY |X,Xr,Yr = PY ′|X,YrPY ′′|Xr can be decomposed into two orthogonal com-

ponents. Consider (X,Yr, Y
′) independent of (Xr, Y

′′) in the ideal distribution

and take U = (U ′, Xr) where U ′ follows PU ′|Yr , Corollary 3.5.1 specializes to the

following Corollary 3.5.2.

Figure 3.4: One-shot primitive relay channel setting.

Corollary 3.5.2. For any PX , PXr, PU ′|Yr, there is a deterministic coding scheme

for the one-shot primitive relay channel with M ∼ Unif[L] such that the error

probability satisfies

Pe ≤ E
[
min

{
γL2−ι(X;U ′,Y ′)

(
2−ι(Xr;Y ′′)+ι(U ′;Yr|Y ′)+1

)
, 1
}]
,

where (X,Yr, U
′, Y ′) ∼ PXPYr|XPU ′|YrPY ′|X,Yr is independent of (Xr, Y

′′) ∼ PXrPY ′′|Xr,

and γ := ln(|U ′||Xr|) + 1.

This gives the asymptotic achievable rateR ≤ I(X;U ′, Y ′)−max{I(U ′;Yr|Y ′)−

Cr, 0} where Cr = maxPXr I(Xr;Y
′′) is the capacity of the channel PY ′′|Xr . It im-

plies the compress-and-forward bound [101], which is the maximum of I(X;U ′, Y ′)
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subject to the constraint Cr ≥ I(U ′;Yr|Y ′) (where the random variables are dis-

tributed as in Corollary 3.5.2). Hence, Corollary 3.5.2 can be treated as a one-shot

compress-and-forward bound.

3.5.1 Partial-Decode-and-Forward Bound

We extend Corollary 3.5.1 to allow partial decoding of the message [36, 58, 101].

To this end, we split the message and encoder into two. The messageM ∼ Unif[L]
is split into M1 ∼ Unif[J] and M2 ∼ Unif[L/J] (assume J is a factor of L). The

encoder controls two nodes (node 1 and 2), where node 1 observes Y1 = M1,

outputs X1 = V , and has an auxiliary U1 = (M1, V ); node 2 observes Y2 =

(M1,M2, V ), outputs X2 = X, and has an auxiliary U2 = (M1,M2, X). The relay

(node 3) observes Y3 = Yr, decodes U1, outputs X3 = Xr, and has an auxiliary

U3 = (M1, U). The decoder (node 4) observes Y4 = Y and uses the decoding

order “U2, U3?, U1?”.

Corollary 3.5.3. Fix any PX,V , PU |Yr,V , function xr(yr, u, v), and J which is a

factor of L. There exists a deterministic coding scheme for the one-shot relay

channel with

Pe ≤ E
[
min

{
J2−ι(V ;Yr) + γLJ−12−ι(X;U,Y |V )

·
(
2−ι(U ;V,Y )+ι(U ;V,Yr) + 1

)(
J2−ι(V ;Y ) + 1

)
, 1
}]
,

where (X,V, Yr, U,Xr, Y ) ∼ PX,V PYr|X,V PU |Yr,V δxr(Yr,U,V )PY |X,Yr,Xr and γ := (ln(J|U|)+
1)(ln(J|V|) + 1).

Applying the law of large numbers to Corollary 3.5.3, and Fourier-Motzkin

elimination (using the PSITIP software [112]), we obtain the following asymptotic
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achievable rate:

min



I(V ;Y ) + I(U, Y ;X|V ),

I(V ;Yr) + I(U, Y ;X|V ),

I(V, U ;Y ) + I(U, Y ;X|V )− I(U ;Yr|V ),

I(V ;Yr) + I(U ;Y |V ) + I(U, Y ;X|V )− I(U ;Yr|V )


,

where (X,V, Yr, U,Xr, Y ) ∼ PX,V PYr|X,V PU |Yr,V δxr(Yr,U,V )PY |X,Yr,Xr , subject to the

constraint I(U ;Yr|V ) ≤ I(U ;Y |V ) + I(U, Y ;X|V ).

Taking xr(yr, (v
′, x′r)) = x′r, U = ∅, V = (V ′, X ′

r), it gives an achievable rate

min{I(X,Xr;Y ), I(V ′;Yr) + I(X;Y |Xr, V
′)}, recovering the partial noncausal

decode-forward bound for relay-with-unlimited-look-ahead [58, Prop. 3].

Specializing to the primitive relay channel, and again substituting U = ∅,

V = (V ′, X ′
r), xr(yr, (v

′, x′r)) = x′r, we have

Pe ≤ E
[
min

{
J2−ι(V ′;Yr) + 2γLJ−12−ι(X;Y ′|V ′)

·
(
J2−ι(V ′;Y ′)−ι(Xr;Y ′′) + 1

)
, 1
}]
,

where γ := (ln J + 1)(ln(J|V ′||Xr|) + 1) and (X,V ′, Yr, Y
′) ∼ PX,V ′PYr|XPY ′|X,Yr is

independent of (Xr, Y
′′) ∼ PXrPY ′′|Xr . It gives the asymptotic rate min{I(V ′;Yr)+

I(X;Y |V ′), I(X;Y ) + Cr} and recovers the partial decode-forward lower bound

for primitive relay channels [36, 101]. One-shot versions of other asymptotic

bounds for primitive relay channels (e.g., [55, 142]) are left for future studies.

3.6 Cascade multiterminal source coding with

computing

We consider the cascade multiterminal source coding problem [42] (which is also

called the cascade coding for computing in [59, Section 21.4]). It is similar to
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the traditional multiterminal source coding problem introduced by Berger and

Tung [14, 169], where two information sources are encoded in a distributed fashion

with loss, though the communication between encoders replaces one of the direct

channels to the decoder in the cascade case. It can include different variations,

e.g., the decoder desires to estimate both X and Y , X only, Y only and some

functions of both. It is tightly related to real problems where it is required to

pass messages to neighbors in order to compute functions of data, e.g., distributed

data collection, aggregating measurements in sensor networks, interactive coding

for computing and distributed lossy averaging (see [42] and references therein).

The asymptotic rate-distortion region for the general cascade multiterminal

source coding problem is unknown, even for the case where X and Y are inde-

pendent. We study the one-shot setting of this problem, which has not been

discussed in literature to the best of our knowledge. We provide a novel one-shot

bound on the cascade multiterminal source coding problem, and show that our

one-shot achievability result recovers the best known asymptotic inner bound,

i.e., the local-computing-and-forwarding inner bound [42] (which in turn recovers

various other existing bounds as special cases, also see [59, Section 21.4] for a

detailed discussion).

The one-shot cascade multiterminal source coding problem is described as

follows (see Figure 3.5). Consider two sourcesX and Y that are jointly distributed

according to PX,Y . They will be described by separate encoders and passed to a

single decoder in a cascade fashion. Upon observingX, encoder a sends a message

M ∈ [L1] about X to encoder b. Encoder b then creates a final messageM ′ ∈ [L2]

summarizing both sources X and Y and sends it to the decoder. We investigate

the error probability Pe, which is the probability of the decoder recovers Z̃ ∈ Z

with excess distortion Pe := P{d(X,Y, Z̃) > D}, where d : X × Y × Z → R≥0

is a distortion measure. Due to the flexibility of the distortion function d, in
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general one can estimate any function of X and Y to tackle various objectives in

practice [42].

Figure 3.5: One-shot cascade multiterminal source coding setting.

By Theorem 3.4.2, we bound Pe by the following corollary.

Corollary 3.6.1. Fix PX,Y , PU,V |X , function z : U×V×Y → Z and L̃i, i = 1, 2, 3

with L̃1L̃2 ≤ L1 and L̃2L̃3 ≤ L2, there exists a deterministic coding scheme for the

one-shot cascade multiterminal source coding problem such that the probability of

excess distortion is bounded by

Pe ≤ E
[
min

{
1{d(X,Y, Z) > D}+ γL̃−1

1 L̃−1
2 2ι(U,V ;X|Y )

+ γL̃−1
1 2−ι(V ;U,Y )+ι(V ;U,X) + L̃−1

2 2−ι(U ;V,Y )+ι(U ;X)

+ γL̃−1
3 2ι(Z;V,Y |U)

(
L̃−1
2 2ι(U ;X) + 1

)
, 1
}]
,

where γ = ln(|U|L̃2) + 1 and X,Y, Z, U, V ∼ PXPY |XPU,V |XPZ|Y,U,V .

Proof. We adapt the problem into our ADN framework by splitting the encoder

a, as shown in Figure 3.6 (see next page). The encoder a1, encoder a2, encoder

b and decoder are referred to as nodes 1, 2, 3, 4, respectively.

Let Mi ∈ [Li] for i = 1, 2, 3. Encoder a1 (node 1) observes X, outputs U , and

has an auxiliary U1 = (U,M2). Encoder a2 (node 2) observes (U,X), outputs

(M1,M2), and has an auxiliary U2 = (V,M1). Encoder b (node 3) observes M1,

M2 and Y , outputs (M2,M3), and has an auxiliary U3 = (Z,M3). The decoder

observes M2,M3 and recovers Z by using the function z and our coding scheme.
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Figure 3.6: One-shot cascade multiterminal source coding in AND framework by

splitting the first encoder.

For each node i = 1, . . . , 4 in the ADN, we describe its input Yi, output Xi,

auxiliary Ui and the terms Bi,j in Theorem 3.4.2 as follows:

1. Node 1 has input Y1 = X, output X1 = U and auxiliary U1 = (U,M2).

2. Node 2 has input Y2 = (U,X), output X2 =M1 and auxiliary U2 = (V,M1).

3. Node 3 has input Y3 = (Y,M1,M2), output X3 = M3, auxiliary U3 =

(Z,M3), and decodes with the order “U2, U1” (i.e., “UEnc 1b, UEnc 1a”). We

have d′3 = d3 = 2, and

B3,1 = γL̃−1
1 L̃−1

2 2ι(U,V ;X|Y ) + γL̃−1
1 2−ι(V ;U,Y )+ι(V ;U,X),

B3,2 = L̃−1
2 2−ι(U ;V,Y )+ι(U ;X),

where γ = ln(|U|L̃2) + 1.

4. Node 4 has input Y4 = (M2,M3), output X4 = Z, and decodes with the

order “U3, U1?” (i.e., “UEnc 2, UEnc 1a?”). By applying Theorem 3.4.2 (note

that d′4 = 1 and d4 = 2), it gives

B4,1 = γL̃−1
3 2ι(Z;V,Y |U)

(
L̃−1
2 2ι(U ;X) + 1

)
,

where γ = ln(|U|L̃2) + 1.
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Therefore, by applying Theorem 3.4.2, the probability of distortion exceeds

the limit Pe := P{d(X,Y, Z̃) > D} can be bounded as the result stated in this

corollary:

Pe ≤ E
[
min

{
1{d(X,Y, Z) > D}+B3,1 +B3,2 +B4,1, 1

}]
= E

[
min

{
1{d(X,Y, Z) > D}+ γL̃−1

1 L̃−1
2 2ι(U,V ;X|Y )

+ γL̃−1
1 2−ι(V ;U,Y )+ι(V ;U,X) + L̃−1

2 2−ι(U ;V,Y )+ι(U ;X)

+ γL̃−1
3 2ι(Z;V,Y |U)

(
L̃−1
2 2ι(U ;X) + 1

)
, 1
}]
,

where γ = ln(|U|L̃2) + 1.

Following the one-shot bound as shown above, we let L̃i = 2nR̃i for i = 1, 2, 3

and apply the law of large numbers. We obtain the asymptotic achievable region

R̃1 + R̃2 > I(X;U, V |Y ),

R̃1 > I(V ;U,X)− I(V ;U, Y ),

R̃2 > I(X;U)− I(V, Y ;U),

R̃2 + R̃3 > I(X;U) + I(Z;V, Y |U),

R̃3 > I(Z;V, Y |U),

and D > E[d(X,Y, Z)]. By L̃1L̃2 ≤ L1 and L̃2L̃3 ≤ L2 and consider R1 = R̃1 + R̃2

and R2 = R̃2 + R̃3, by applying the Fourier-Motzkin elimination (using the PSI-

TIP software [112]), we recover an asymptotic achievable region for the cascade

multiterminal source coding problem:

R1 > I(X;U, V |Y ),

R2 > I(X;U) + I(Z;V, Y |U),
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and D > E[d(X,Y, Z)], where X,Y, Z, U, V ∼ PXPY |XPU,V |XPZ|Y,U,V . This is

the local-computing-and-forwarding inner bound in asymptotic case, as discussed

in [42] and also in [59, Section 21.4].

3.7 Examples of Acyclic Discrete Networks

In this section, to demonstrate the use of our main results, we apply Theorem 3.4.1

and Theorem 3.4.2 on several settings in network information theory: Gelfand-

Pinsker [74, 89], Wyner-Ziv [180, 182], coding for computing [184], multiple access

channels [4, 5, 125] and broadcast channels [138], recovering similar results as the

results in [117] and other works.

3.7.1 Gelfand-Pinsker Problem

The one-shot version of the Gelfand-Pinsker problem [74] is described as follows.

Upon observingM ∼ Unif[L] and S ∼ PS, the encoder generates X and sends

X through a channel PY |X,S. The decoder receives Y and recovers M̂ . This

can be considered as an ADN as follows (see Figure 3.7 for an illustration): in

the ideal situation, let Y1 := (M,S) represent all the information coming into

node 1, Y2 := Y , PY2|Y1,X1 be PY |S,X , and X2 := M . The auxiliary of node 1

is U1 = (U,M) for some U following PU |S given S. The decoding order of node

2 is “U1” (i.e., it only wants U1). Since node 2 has decoded U1, X2 is allowed

to depend on U1 = (U,M), and hence the choice X2 := M is valid in the ideal

situation. Nevertheless, in the actual situation where we have X̃, Ỹ instead of

X,Y , the actual output X̃2 will not be exactly M , though the error probability

Pe := P(X̃2 6= M) can still be bounded. Applying Theorem 3.4.2, we obtain the

following Corollary 3.7.1.
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Figure 3.7: Gelfand-Pinsker problem in ADN framework.

Corollary 3.7.1. Fix PU |S and function x : U × S → X . There exists a deter-

ministic coding scheme for the channel PY |X,S with state S ∼ PS and message

M ∼ Unif[L] such that

Pe ≤ E
[
min

{
L2−ι(U ;Y )+ι(U ;S), 1

}]
,

where S, U,X, Y ∼ PSPU |Sδx(U,S)PY |X,S.

This bound is similar to the one given in [117] (which is stronger than the

one-shot bounds in [172, 178, 189] in the second order). Both of them attain the

second-order result in [151].

3.7.2 Wyner-Ziv Problem and Coding for Computing

The Wyner-Ziv problem [180, 182] in a one-shot setting is described as follows

(see Figure 3.9 for an illustration).

Upon observing X ∼ PX , the encoder outputs M ∈ [L]. The decoder receives

M and the side information T ∼ PT |X , and recovers Z̃ ∈ Z with probability of

excess distortion Pe := P{d(X, Z̃) > D}, where d : X × Z → R≥0 is a distortion

measure. This can be considered as an ADN: in the ideal situation, Y1 := X,

X1 := M , Y2 := (M,T ), X2 := Z. The auxiliary of node 1 is U1 = (U,M) for

some U following PU |X given X. By Theorem 3.4.2, we bound Pe as follows.
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Figure 3.8: Wyner-Ziv problem in ADN framework.

Corollary 3.7.2. Fix PU |X and function z : U×Y → Z. There exists a determin-

istic coding scheme for lossy source coding with source X ∼ PX , side information

at the decoder T ∼ PT |X and description M ∈ [L] such that

Pe ≤ E
[
min

{
1{d(X,Z) > D}+ L−12−ι(U ;T )+ι(U ;X), 1

}]
, (3.8)

where X,Y, U, Z ∼ PXPY |XPU |Xδz(U,Y ).

This bound is similar to, though slightly weaker than, the bound given in [117]

(which improves upon the one-shot bounds in [172, 178] in second-order perfor-

mance). Our main contribution lies in the generality of our one-shot coding

framework, and we do not always derive bounds identical to those in [117], de-

spite both methods employing Poisson functional representations.

This reduces to lossy source coding with T = ∅. Let U = Z, we have Pe ≤

P(d(X,Z) > D) + E
[
min

{
L−12ι(Z;X), 1

}]
.

We also consider coding for computing [184], where node 2 recovers a function

f(X,T ) of X and T with respect to distortion level D with a distortion measure

d(·, ·). The probability of excess distortion is Pe := P{d(f(X,T ), Z̃) > D}. We

obtain a result similar to Corollary 3.7.2, where (3.8) is changed to

Pe ≤ E
[
min

{
1{d(f(X,T ), Z) > D}+ L−12−ι(U ;T )+ι(U ;X), 1

}]
.

43



3.7.3 Multiple Access Channel

The multiple access channel [4, 5, 125] in a one-shot setting is described as follows.

There are two encoders, one decoder, and two independent messages Mj ∼

Unif[Lj] for j = 1, 2. Encoder j observes Mj and creates Xj for j = 1, 2.

The decoder observes the output Y of the channel PY |X1,X2 and produces the

reconstructions (M̂1, M̂2) of the messages. The error probability is defined as

Pe := P{(M1,M2) 6= (M̂1, M̂2)}. To consider this as an ADN, in the ideal sit-

uation, we let Y1 := M1, Y2 := M2, Y3 := Y and X3 := (M1,M2). We let

U1 := (X1,M1) and U2 := (X2,M2). The decoding order of node 3 is “U2, U1”

(i.e., decode U1 (soft), and then U2 (unique), and then U1 (unique)). By Theo-

rem 3.4.2, we have the following result.

Figure 3.9: Multiple access channel in ADN framework.

Corollary 3.7.3. Fix PX1 , PX2. There exists a deterministic coding scheme for

the multiple access channel PY |X1,X2 for messages Mj ∼ Unif[1 : Lj] for j = 1, 2

such that

Pe ≤ E
[
min

{
γL1L22

−ι(X1,X2;Y ) + γL22
−ι(X2;Y |X1) + L12

−ι(X1;Y |X2), 1
}]
,

where γ := ln(L1|X1|) + 1, (X1, X2, Y ) ∼ PX1PX2PY |X1,X2.

This bound is similar to the one-shot bounds in [117, 172]. In the asymptotic

setting, this will give the region R1 < I(X1;Y |X2), R2 < I(X2;Y |X1), R1+R2 <

I(X1, X2;Y ).
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3.7.4 Broadcast Channel with Private Messages

The broadcast channel with private messages [138] in a one-shot setting is de-

scribed as follows.

Upon observing independent messagesMj ∼ Unif[Lj] for j = 1, 2, the encoder

produces X and sends it through a channel PY1,Y2|X . Decoder j observes Yj and

reconstructs M̂j for j = 1, 2. By Theorem 3.4.2, we have the following result.

Corollary 3.7.4. Fix any PU1,U2 and function x : U1 × U2 → X . There exists

a deterministic coding scheme for the broadcast channel PY1,Y2|X for independent

messages Mk ∼ Unif[Lj] for j = 1, 2, with the error probability bounded by

Pe ≤ E
[
min

{
L12

−ι(U1;Y1) + L22
−ι(U2;Y2)+ι(U1;U2), 1

}]
,

where (U1, U2, X, Y1, Y2) ∼ PU1,U2δx(U1,U2)PY1,Y2|X .

In the asymptotic case, this gives a corner point in Marton’s region [138]:

R1 < I(U1;Y1), R2 < I(U2;Y2)− I(U1;U2). Another corner point can be obtained

by swapping the decoders.
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Chapter 4

One-Shot Coding on Secrecy

Problems with Channel

Uncertainties

4.1 Overview

In this chapter, we study two fundamental information theory problems in the

one-shot regime, namely the information hiding problem [144] and the compound

wiretap channel [123]. The former concerns active attacks during information

transmission, while the latter addresses passive eavesdropping and information

leakage. These two problems have become crucial in the era of data science, where

secrecy and privacy are increasingly important due to the growing dependence

on and reliance upon large amounts of communicated, analyzed, and utilized

data, which inherently contain sensitive and personal information. This chapter

is partially based on [134].

For the information hiding problem, [144] formulated it as a communica-

tion system from a game-theoretic perspective, where an encoder-decoder team
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seeks to transmit a confidential message embedded in a host data source, while

the opposing side is an attacker, modeled as a noisy channel, attempts to de-

stroy or degrade the message. The information-theoretic limits of different varia-

tions of information hiding have been extensively investigated over the past two

decades [35, 157, 158], due to its wide range of applications, including watermark-

ing, fingerprinting, steganography, and copyright protection. Existing analyses

of information hiding problems borrow techniques from various fields, including

wireless communication, signal processing, cryptography, and game theory.

For the compound wiretap channel, [123] modeled the problem as a generaliza-

tion of Wyner’s wiretap channel setting [181], where the communication channel

can take multiple potential states. The objective is to ensure reliable transmission

and minimize information leakage regardless of which state occurs. This model is

more general and better suited to practical scenarios where the transmitter may

not have knowledge of the channel conditions or where channel characteristics

change rapidly, yet communication performance must still be guaranteed.

In all existing studies on these two problems, the information-theoretic limits

have been analyzed in the asymptotic regime, assuming that the signal has a

blocklength approaching infinity. However, this assumption does not hold in

practice, as packets have bounded lengths, which can be quite short in many

applications [95]. Similar to Chapter 3, we study the one-shot achievability results

of a generalized information hiding setting and the compound wiretap channel,

where the channel or source is arbitrary and used only once, the law of large

numbers does not apply and conventional typicality-based tools are inapplicable.

Most of the existing asymptotic analyses on the two problems [123, 144] as-

sume the decoder know the channel condition (in information hiding, the at-

tacker’s strategy), since when the blocklength is large, one can utilize training

symbols at the beginning of transmission, whose size becomes negligible compared
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to the blocklength. However, this assumption is questionable in the one-shot case

(see Section 4.3.3 for discussions).1 We only assume the attack channel belongs

to a set (which may have infinite cardinality). Our goal is to provide distribution-

ally robust coding strategies (also see [137]) for the two problems, by utilizing a

classical covering argument [18] to handle the uncertainties of channels. To the

best of the authors’ knowledge, our results are novel and have not been studied

in the literature.

This chapter is organized as follows. We begin with a literature review on

information hiding, watermarking, compound wiretap channels, and one-shot in-

formation theory in Section 4.2. Next, we present the one-shot generalized in-

formation hiding problem in Section 4.3 and recover existing asymptotic results

in Section 4.4. Within the same framework, we study the one-shot compound

wiretap channel in Section 4.5.

4.2 Related Work

We review related literature on the information hiding and the compound wiretap

channel in this section.

4.2.1 Information Hiding

The information hiding problem has been studied since [35, 144, 157, 158], due

to its wide range of applications, including watermarking, fingerprinting, au-

dio/image/video processing, copyright protection, and steganography. The goal

1Note that this assumption was also removed in [158], although that work assumes the side

information is an independent shared key of unlimited size and is chosen as part of the coding

scheme, whereas in our information hiding setting, we allow it to be correlated with the host

and fixed, as in [144].
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is to hide a message into some host signal (by introducing a certain level of distor-

tion), so that the message can be correctly reconstructed after suffering attacks

(which introduce another level of distortion). This problem was modeled as a

communication problem, and asymptotic information-theoretic capacity was de-

rived in [144]. In general, information hiding is closely related to the Gelfand–
Pinsker problem [74, 90], and various extensions have been studied, e.g., the case

where side information is available to the encoder, decoder, and adversary [146],

and the case where the decoder has rate-limited side information [161]. See [9] for

its duality with the Wyner–Ziv problem, and [99] for a comprehensive survey. We

discuss its applications and related settings with different objectives as follows.

Watermarking, Fingerprinting, and Steganography

The setting in [144] can be viewed as public watermarking [158], where the host

signal is available only at the encoder. In contrast, when it is also available at

the decoder, private watermarking has been studied in [37, 157]. In the Gaussian

case, public and private watermarking have the same capacity [35], but this is not

true in general. Watermarking problems consider messages containing personal

identification information to be protected from attacks, but secrecy is not always

required. In comparison, digital fingerprinting [21, 144] embeds fingerprints into

the host data to uniquely identify users for tracing illegal data usage, which can

be more challenging due to potential collusion. A provably good data embed-

ding strategy was introduced by [31]. Random coding error exponents have been

investigated in these problems [140, 143, 146]. Although [144, Sec. VII.C] in-

dicated the applicability of information hiding to steganography, the discussion

was later extended by [145, 175] to the capacity of perfectly secure steganographic

systems. Other steganographic code designs include using trellis codes [79] and

polar codes [122].
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Host, Stegotext, and Reversibility

In the conventional information hiding setting [144], the message is embedded

into host data by producing an encoded signal (“stegotext”), with the goal of

recovering the message only. Other objectives have been considered later, such

as conveying the host [102] or reconstructing the stegotext [78, 183]. Reversible

information embedding has also been investigated [97, 160, 162], where the host

signal needs to be decoded. However, this can incur a high cost when the host has

high entropy [97], making perfect reversibility even impossible for continuous host

signals [162]. Nevertheless, in practice, the goal is often to enable retransmission

of the stegotext, and codes for stegotext recovery have been studied [78, 183].

For this setting, single-letter capacity-distortion tradeoffs are known only for

logarithmic distortion [102] and quadratic distortion in the Gaussian case [164].

4.2.2 Compound Wiretap Channels

Compound wiretap channels [123] generalize the wiretap channel model byWyner [181]

by allowing both the legitimate channel and the eavesdropper’s channel to have

multiple possible states. The objective is to guarantee reliable and secure signal

transmission regardless of which state occurs. This is a practical model for chan-

nel uncertainty, where the transmitter may have no knowledge of the channel

(due to the dynamic nature of the wireless medium or unavoidable implementa-

tion/estimation inaccuracies), but zero performance outage is still required (e.g.,

for ultra-reliable communications [95]). [123] proposed achievable and converse

results, with the converse bounds shown to be tight in certain cases by [17].

They also studied the achievable secrecy degrees of freedom (s.d.o.f.) region for

a multi-input multi-output (MIMO) model, which was later extended to the case

of two confidential messages in [103]. The s.d.o.f. of compound wiretap parallel
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channels was also studied in [131]. See [53, 54] for discussions on Gaussian MIMO

compound wiretap channels.

In [17, 123], the results focused on discrete memoryless channels with a count-

ably finite uncertainty set (i.e., the set from which the exact channel realization

is drawn). This was later extended to arbitrary uncertainty sets, including con-

tinuous alphabets, by [152], which is also one of our contributions. Moreover, [19]

showed that the secrecy capacity is a continuous function of the uncertainty set.

4.3 One-shot Generalized Information Hiding

In this section, we formulate the generalized one-shot information hiding problem,

which is more general than the one-shot information hiding setting in [134] and

can be seen as a natural generalization of [134], [183], and [146]. More specifically,

as an extension of our conference version [134], we adopt the idea from [146] that

considers the side information available at both the encoder and the decoder.2

Moreover, similar to [183], we require the decoder to not only reconstruct the

message M , but also the stegotext X.

Our generalized information hiding problem recovers many existing settings

as special cases, including the conventional information hiding problem [134, 144,

157], the information embedding with stegotext reconstruction problem [78, 183],

the conventional Gelfand-Pinsker coding [74, 90], the generalized Gelfand–Pinsker
family [146] and the compound channel [18, 45, 148, 179], and also the special

cases recovered therein.
2In [146], it was assumed that there were three sources of side information, available at the

encoder, the attacker, and the decoder, respectively. We model this scenario by considering

sources of side information available at the encoder and the decoder, together with the attack

channel being in an unspecified set, since the decoder has no knowledge on the attacker. We

can recover the Gelfand-Pinsker coding [74, 90] by letting A = {AY |X} be a singleton set.
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Figure 4.1: One-shot generalized information hiding setting.

4.3.1 Problem Formulation

The one-shot generalized information hiding problem is shown in Figure 4.1.

The goal is to hide a message M into a host signal Se, so that even though

there is an attacker during the signal transmission which aims at removing the

hidden message, the decoder can still reconstruct the original message and also

the stegotext X, within a range defined by the distortion functions. We further

elaborate their roles and assumptions in detail as follows.

• Encoder: The encoder observes a messageM that is uniformly chosen from

the set [1 : L], and the goal of encoding is to hide M into a host data source

Se ∈ Se by introducing some tolerable level of distortions. Given Se and

M , the encoding function f : Se × [1 : L] → X outputs X = f(Se,M). It

is expected that X is close to Se, in the sense that d1(S,X) is small, where

d1 : Se×X → [0,∞) is a distortion measure. We want d1(S,X) ≤ D1 with

high probability. This will be elaborated later. The encoded signal X is

then transmitted through the a channel AY |X ∈ A.

• Attacker: The attacker is formulated as a noisy channel PY |X . With input

X, it performs data processing attacks on X by introducing another level

of distortion and produces Y , a corrupted version of X. Its objective is

to (partially) remove or degrade the message and/or the stegotext X, so
53



that the decoder cannot have a correct reconstruction with a high fidelity.

Unlike the conventional asymptotic information hiding [144], we do not

assume the attacker’s strategy is known by the encoder and the decoder.

Instead, the attacker is free to choose from a class of channels A (e.g.,

the class of channels satisfying some distortion constraint between X and

Y , or the class of memoryless channels in case X and Y are sequences).

Both deterministic attacks or randomized attacks could be performed. We

assume the attacker has knowledge of the distributions (but not the values)

of M,Se, Sd, and also the code C that is used by the encoder and the

decoder.

• Decoder: The decoder observes Y , the output of the attacker, together

with another source of side information Sd, and computes (M̂, X̂) = ϕ(Sd, Y ),

the distorted versions of M and X, where ϕ : Sd ×Y → [1 : L]×X . When

the stogetext X is expected to be reconstructed, we expect d2(X, X̂) is

small, where d2 : X × X → [0,∞) is another distortion measure. Since we

assume that the decoder is uninformed of the attacker’s strategy (different

from [78, 144, 183]), we intend to bound the encoder-decoder team’s worst

case failure probability

Pe := sup
AY |X∈A

P
(
d1(S,X) > D1 OR d2(X, X̂) > D2 OR M 6= M̂

)
. (4.1)

to be small, where we assume (Se, Sd,M) ∼ PSe,Sd×Unif[L], X = f(Se,M),

Y |X ∼ AY |X and (M̂, X̂) = ϕ(Sd, Y ) in the probability.3

3Note that [144] imposes a constraint on the expected distortion E[d1(S,X)], which is rea-

sonable in the context of [144] because the memoryless assumption and the law of large numbers

ensure that the actual distortion is close to the expected distortion. Since we are considering a

one-shot setting where we only assume the attack channel is chosen from a set A, if constraint

need to be specified, it might be more reasonable to consider d1(S,X) > D1 as a failure event
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• Side information: The side information Se, Sa, Sd can be viewed as cer-

tain common randomness (or some resource) available at the encoder, the

attacker and the decoder, respectively. The joint distribution PSe,Sd reveals

information about the host data source Se to the decoder.

Remark 4.3.1. Our formulation can be viewed as a one-shot version of the general-

ized Gelfand-Pinsker problem [146] (which only considered discrete case though),

or a one-shot compound channel with side information at the encoder and/or the

decoder.

Remark 4.3.2. As noted in [144, 158] (also see [35, 157]), these settings can be

viewed as a game between two parties: the first party consists of the encoder (in-

formation hider) and the decoder, who are cooperatively transmitting the message

M ; the second party is an attacker, who is trying to destroy or degrade the hidden

message M in Se so that the decoder cannot correctly decode M or reconstruct

a good X̂. More discussions on such game-theoretic perspective can be found

in [144].

4.3.2 One-shot Achievability Results

We then provide one-shot achievability results of the generalized information

hiding problem.

Note that in one-shot settings, as we discussed above, the techniques in [144,

158] (e.g., the tools based on the typical sets), which have resemblances to the

Gelfand-Pinsker coding [74, 90] as discussed in [144]) are not suitable. Similar to

Chapter 3, we utilize Poisson Matching Lemma has been shown to perform well

in various one-shot settings [117] and was been introduced in 2.3 as one part of

and bound the probability of failure, i.e., the excess distortion probability instead, compared

to expected distortion.
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our proof technique. Our one-shot results apply to both discrete and continuous

cases.

Briefly recall Chapter 2. Fix a distribution Q over U . Let (Ti)i=1,2,... be a

Poisson process with rate 1. Let U := (Ūi)i be an independent i.i.d. sequence

with distribution Q. The “marked” Poisson process (Ūi, Ti)i supports a “query

operation” given by the Poisson functional representation, where one can input

a distribution P over U , and obtain one sample ŨP with distribution P . The

Poisson functional representation is given by

UP := ŪK , where K := argmin
i

Ti ·
(dP
dQ(Ūi)

)−1

.

Since we let the encoder-decoder team account for all possible attack channels

in a set A, the achievability results have to suffer a penalty depending on the

“size” of A. Though the cardinality of A could be infinite, we can often find a

finite subset Ã such that every attack channel A ∈ A is close enough to some

Ã ∈ Ã. We capture this notion of size by the ϵ-covering number defined below

(see similar covering arguments in [18, 144]).

Definition 4.3.3. Given a set of channels A from X to Y , its ϵ-covering number

is defined as

Nϵ(A) := min
{
|Ã| : Ã ⊆ A, sup

A∈A
min
Ã∈Ã

sup
x∈X

∥∥∥AY |X(·|x)− ÃY |X(·|x)
∥∥∥

TV
≤ ϵ
}
,

where ‖AY |X(·|x) − ÃY |X(·|x)‖TV ∈ [0, 1] denotes the total variation distance

between AY |X(·|x) (the distribution of Y if X = x, and Y follows AY |X) and

ÃY |X(·|x).

We now present the main result, which is a one-shot achievability result with a

bound on the error probability in terms of Nϵ(A) and information density terms.
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Theorem 4.3.4. Fix any PU,X|Se,Sd and channel ÂY |X . For any ϵ ≥ 0, there

exists a scheme for the generalized information hiding problem satisfying

Pe ≤ Nϵ(A) sup
A∈A

EY |X∼A

[
1− 1{d1(Se, X) ≤ D1}

· 1{d2(X, X̂) ≤ D2} ·
(
1 + L · 2−ι̂(U ;Y,Sd)+ι(U ;Se)

)−1
]
+ ϵ,

where we assume (Se, Sd, U,X, Y ) ∼ PSe,SdPU,X|SeAY |X in the expectation, and

ι̂(U ;Y, Sd) is the information density computed by the joint distribution PS,KPU,X|S,KÂY |X

(instead of AY |X), assuming that ι(U ;Se), ι̂(U ;Y, Sd) are almost surely finite for

every AY |X ∈ A.

Proof. The idea is that we design the decoder assuming that the attack channel

is fixed to AY |X , and hope that this decoder works for every attack channel

AY |X ∈ A. Let C := ((Ūi, M̄i), Ti)i where (Ti)i is a Poisson process, Ūi
iid∼ PU ,

and M̄i
iid∼ PM (where PM = Unif[L]). This will act as a random codebook shared

between the encoder and the decoder (and this codebook will be fixed later).

The encoder observes the message M ∼ PM and the encoder-side host sig-

nal Se, by the Poisson functional representation [117, 118] on the distribution

PU |Se(·|Se) × δM over U × [1 : L] it produces U = UPU|Se (·|Se)×δM ,4 and sends

the generated X|(Se, U) ∼ PX|Se,U . The decoder observes Y, Sd, outputs M̂ =

MP̂
U|Y,Sd (·|Y,K)×PM

by the Poisson functional representation, and computes the

reconstruction sequence X̂ by X̂ = x̂(M̂, Y ), where P̂U |Y,Sd is the conditional dis-

tribution computed by the joint distribution PSe,SdPU,X|SeÂY |X . When the attack

channel is AY |X ∈ A, the error probability is bounded as follows:

Pe(A) := 1− PY |X∼AY |X

(
d1(S

e, X) ≤ D1 AND M = M̂
)

4The Poisson functional representation produces a pair (U,M), and U is set to the first

component of the pair.
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= E
[
1− 1{d1(Se, X) ≤ D1}

· 1{d2(X, X̂) ≤ D2} · 1{M = M̂}
]

≤ E
[
1− 1{d1(Se, X) ≤ D1} · 1{d2(X, X̂) ≤ D2}

· P
(
M = M̂ |M,Se, Sd, U, Y

)]
≤ E

[
1− 1{d1(Se, X) ≤ D1} · 1{d2(X, X̂) ≤ D2}

· P
(
(U,M) = (U,M)P̂

U|Y,Sd (·|Y,Sd)×PM
|M,Se, Sd, U, Y

)]
(a)

≤ E
[
1− 1{d1(Se, X) ≤ D1} · 1{d2(X, X̂) ≤ D2}

·
(
1 +

dPU |Se(·|Se)× δM
dP̂U |Y,Sd(·|Y, Sd)× PM

(U,M)
)−1
]

= E
[
1− 1{d1(Se, X) ≤ D1} · 1{d2(X, X̂) ≤ D2}

·
(
1 + L · PU |Se(·|Se)

P̂U |Y,Sd(·|Y, Sd)
(U)
)−1
]

= E
[
1− 1{d1(Se, X)≤D1} · 1{d2(X, X̂) ≤ D2}

·
(
1 + L · 2−ι̂(U ;Y,Sd)+ι(U ;Se)

)−1
]

≤ sup
AY |X∈A

EY |X∼AY |X

[
1− 1{d1(Se, X) ≤ D1}

· 1{d2(X, X̂) ≤ D2} ·
(
1 + L · 2−ι̂(U ;Y,Sd)+ι(U ;Se)

)−1
]

where (a) is by the Poisson matching lemma.5 If we allow the encoder and

the decoder to share unlimited additional common randomness, we can assume

the codebook C = ((Ūi, M̄i), Ti)i is actually shared, and conclude that Pe =

5The Poisson matching lemma is applied on the conditional distributions given

M,Se, Sd, U, Y . Also see the conditional Poisson matching lemma [117].
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supA∈A Pe(A) ≤ Pe. Nevertheless, the only actual common randomness between

the encoder and the decoder is K, which we cannot control. Therefore, we have

to fix the codebook.

Let Pe(A, c) be the probability of error when the attack channel is A and

the codebook is C = c. We have Pe(A) = EC[Pe(A, C)]. Let Ã ⊆ A attain the

minimum in Nϵ(A).

Consider any A ∈ A, and let Ã ∈ Ã satisfy

sup
x∈X

∥∥∥AY |X(·|x)− ÃY |X(·|x)
∥∥∥

TV
≤ ϵ.

The total variation distance between the joint distribution of M,S,K,U,X, Y

under the attack channel A conditional on C = c and the joint distribution

under the attack channel Ã conditional on C = c is also bounded by ϵ. Hence

|Pe(A, c)− Pe(Ã, c)| ≤ ϵ and

Pe(A, c) ≤ Pe(Ã, c) + ϵ

≤
∑
Ã∈Ã

Pe(Ã, c) + ϵ.

Therefore,

EC

[
sup
A∈A

Pe(A, C)
]
≤ EC

[∑
Ã∈Ã

Pe(Ã, C) + ϵ
]

=
∑
Ã∈Ã

Pe(Ã) + ϵ

≤ |Ã| · Pe + ϵ.

The proof is completed by the existence of a codebook c such that

sup
A∈A

Pe(A, c) ≤ |Ã| · Pe + ϵ.
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Remark 4.3.5. It is straightforward to convert this to a finite blocklength result

where n is a fixed number using the Berry-Esseen theorem [15, 62].

Remark 4.3.6. In Theorem 4.3.4, we use a penalty term Nϵ(A) to measure the

effect of the “size” of A, which introduces a degradation in the error proba-

bility. The choice of ϵ can be viewed as a way to balance the two terms in

Theorem 4.3.4: increasing ϵ will result in a larger ϵ but a smaller Nϵ(A) (see

also Proposition 4.4.1). Although directly investigating Nϵ(A) following Defi-

nition 4.3.3 may not be straightforward, it is possible to optimize the one-shot

bound in Theorem 4.3.4 with respect to ϵ and the bound on Nϵ(A) in Proposi-

tion 4.4.1. We leave more detailed analysis of these manipulations and potential

second-order results as future work. For now, we only require that our one-

shot bound suffices to recover the asymptotic hiding capacity [144] when applied

to discrete memoryless channels, as demonstrated in Section 4.4 where we take

ϵ = 1/n in the asymptotic analysis.

Remark 4.3.7. Note that when Sd = Se = ∅, d1(s, x) = 0, and A = {AY |X}

is a singleton set, taking ÂY |X = AY |X , Theorem 4.3.4 reduces to the one-shot

Gelfand-Pinsker coding result in [117].

4.3.3 Discussions

In [144], it is assumed that the attack channel must be memoryless, and hence

the decoder can obtain full knowledge about the attack channel, justified by the

large blocklength of signals. In this paper, similar to [146, 158] (which focus on

different targets or are under settings different to us), we drop this assumption,

and consider a one-shot setting where the set of possible attack channels A can

be any set of channels. Also, we do not assume that the decoder knows the attack

channel, which is unrealistic in the one-shot setting where the attacker can be

arbitrary. In [158] (which is a specialized information hiding setting that is similar
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to Section 4.4) the memoryless assumption is also dropped, and an asymptotic

hiding capacity expressed as the limit of a sequence of single-letter expressions

has been derived using constant composition codes. The key difference between

[158] and our setting in Section 4.4 (and also [144]) is that the side information in

[158] is a shared key of unlimited size independent ofM,Se that can be chosen as

a part of the coding scheme, whereas in our paper and [144] the side information

is given and may be correlated with the host signal (where the dependence is

from the joint distribution), and cannot be changed. In some watermarking

problems [37, 84] certain components can be further constrained, e.g., there may

exist a mapping from the message M to a codeword V (M) which is independent

of the host, and then composite data are obtained by a mapping from V (M) and

the side information.

The information hiding can be regarded as a variant of Gelfand-Pinsker cod-

ing for channels with side information at the encoder [74, 90], where the channel

is fixed and not chosen by the attacker, and there is no shared side information

between the encoder and the decoder. Since the encoder and the decoder have to

account for all possible attack channels, this can be regarded as a combination

of Gelfand-Pinsker coding and compound channel [18, 45, 179]. The analyses

in [144, 158] utilize techniques such as random binning, joint typicality decod-

ing and constant composition codes, which are also commonly utilized in the

asymptotic analyses of Gelfand-Pinsker coding [74, 151]. These techniques may

not be suitable for our one-shot setting. Strong typicality and constant compo-

sition codes are inapplicable when the blocklength is 1. While random binning

can be applied to one-shot Gelfand-Pinsker coding [172, 177, 189], it produces

weaker results compared to the Poisson matching lemma [117]. To obtain tight

one-shot bounds for information hiding, we utilize the Poisson matching lemma

instead. The main tool used to prove the coding theorems of generalized Gelfand-
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Pinsker problems [146] is also the method of types [38], which does not work in

the one-shot analysis in general.

4.4 Recovery of the Asymptotic Information Hid-

ing

In this section, we discuss a special case of our generalized information hiding

setting, which is the information hiding setting that was investigated in [144]. We

show that one-shot achievability results readily recover their asymptotic results

on this setting, when we apply our results on discrete and memoryless channels.

We first provide a simple bound on the ϵ-covering number in the case that X

and Y are discrete and finite.

Proposition 4.4.1. If X and Y are finite, then

Nϵ(A) ≤
( 1

2ϵ
+
|Y|+ 1

2

)|X |·|Y|
.

The proof can be found in Appendix B.1.

We show that we recover the information hiding capacity that was discovered

by [144]. We can employ similar procedure to recover either the achievable bound

of information hiding with stegotext reconstruction [183, Theorem 1] (which in

turn is an extension of [78] and [162]), or the similar bounds in [146]. For the

simplicity, we only show the details of recovering the hiding capacity in [144] here.

The setting is shown in Figure 4.2, where there exist a host signal S available

to the encoder, in which the encoder hides the message, and another source

of side information K that is available to the encoder and the decoder. By

letting Se := (S,K) and Sd := K, we now show that Theorem 4.3.4 recovers the

asymptotic result in [144] when S,K,X, Y are finite and discrete, and the attack
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channel must be memoryless and is subject to a distortion constraint, and hence

giving a simple alternative proof to [144].

Figure 4.2: Information hiding setting [144, 158].

Consider sequences Sn = (S1, . . . , Sn), Kn, Xn, Y n where (Si, Ki)
iid∼ PS,K .

Consider a channel input distribution PX . The class of attack channels An =

An(PX) (which depends on PX) is taken to be

An(PX) :=
{
An

Y |X : AY |X ∈ A(PX)
}
,

and we let

A(PX) :=
{
AY |X : E(X,Y )∼PXAY |X [d3(X,Y )] ≤ D3

}
,

where d3 : X×Y → [0,∞) is a distortion measure, and D3 is the allowed distortion

level. In other words, the attacker can only use memoryless channels An
Y |X that

satisfy the expected distortion constraint E[d3(X,Y )] ≤ D3. The asymptotic

hiding capacity given in [144] is

C = max
PU,X|S,K

min
AY |X :E[d2(X,Y )]≤D3

(
I(U ;Y |K)− I(U ;S|K)

)
.

where the maximum is over PU,X|S,K with E[d1(S,X)] ≤ D1.

We now show the achievability of the above asymptotic rate as a direct corol-

lary of Theorem 4.3.4. Fix PU,X|S,K which achieves the above maximum subject

to E[d1(S,X)] ≤ D′
1 where D′

1 < D1. Take ÂY |X to be the minimizer of the rate-

distortion function minAY |X :E[d2(X,Y )]≤D2 I(U ;Y |K), and assume (S,K,U,X, Y ) ∼

63



PS,KPU,X|S,KÂY |X . Write the information density and mutual information ob-

tained from this distribution as ι̂U ;Y |K and Î(U ;Y |K), respectively. Fix a coding

rate R < Î(U ;Y |K)− I(U ;S|K). We want to show that this rate is achievable.

Consider any attack channel AY |X with E[d3(X,Y )] ≤ D3. Let Aλ
Y |X :=

(1−λ)ÂY |X+λAY |X for 0 ≤ λ ≤ 1. Write Iλ(U ;Y |K) for the mutual information

computed assuming Y |X ∼ Aλ
Y |X . It is straightforward to check that

d
dλIλ(U ;Y |K)

∣∣∣
λ=0

= EY |X∼AY |X [ι̂(U ;Y |K)]− Î(U ;Y |K).

By the optimality of Â, the above derivative is nonnegative, and hence

EY |X∼AY |X [ι̂(U ;Y |K)] ≥ Î(U ;Y |K).

Therefore, when we have i.i.d. sequences (Sn, Kn, Un, Xn, Y n) ∼ P n
S,KP

n
U,X|S,KA

n
Y |X

and L = b2nRc, by the law of large numbers,

L2−ι̂(Un;Y n|Kn)+ι(Un;Sn|Kn)

≤ 2nR−
∑n

i=1(ι̂(Ui;Yi|Ki)−ι(Ui;Si|Ki))

→ 0

exponentially as n→∞ since

E[ι̂(Ui;Yi|Ki)− ι(Ui;Si|Ki))]

≥ Î(U ;Y |K)− I(U ;S|K)

> R

We also have

d1(S
n, Xn) =

n∑
i=1

d1(Si, Xi) > nD1

with probability approaching 0 exponentially since D′
1 < D1. These convergences

are uniform over all such attack channels AY |X since the random variables are

discrete and finite.
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Therefore, to bound Pe using Theorem 4.3.4, it is left to bound the ϵ-covering

number Nϵ(An(PX)). Note that∥∥∥An
Y |X(·|xn)− Ãn

Y |X(·|xn)
∥∥∥

TV

≤
n∑

i=1

∥∥∥AY |X(·|xi)− ÃY |X(·|xi)
∥∥∥

TV
,

and hence we can construct an ϵ-cover of An(PX) using an (ϵ/n)-cover of A(PX).

Therefore,

Nϵ(An(PX)) ≤ Nϵ/n(A(PX))

= O((n/ϵ)|X |·|Y|)

by Proposition 4.4.1, which grows much slower than the exponential decrease of

the expectation in Theorem 4.3.4. Therefore, taking ϵ = 1/n, we have Pe → 0 as

n→∞. Taking D′
1 → D1 completes the proof.

4.5 One-shot Compound Wiretap Channels

In this section, we consider the compound wiretap channel [123] in the one-shot

setting. We utilize the Poisson matching lemma [117], under a framework sim-

ilar to the one-shot codes of the information hiding problem. We provide novel

one-shot achievablity results for the compound wiretap channel [123]. To the

best of our knowledge, the one-shot results of this problem has not been dis-

cussed in literature, though finite-blocklength bounds on single (without channel

uncertainties) wiretap channels can be found in [87, 130, 186, 187].

Unlike the asymptotic analysis of the compound wiretap channel [123], our

results also apply to continuous cases. Note that [152] also studied the continuous

case of compound wiretap channels, but the focus in [152] was mainly on the

compound Gaussian MIMO wiretap channels, and the analysis was not one-shot.
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In modern wireless communication, handling continuous cases can be essential

in various applications for capturing the inherent variability and nuances of real-

world signal propagation, which has a dynamic nature.

4.5.1 Problem Formulation

The one-shot compound wiretap channel setting is described as follows. A mes-

sage M is uniformly chosen from Unif[L]. Upon observing M ∼ Unif[L], the

encoder produces X = f(M), where f : [L]→ X is a randomized encoding func-

tion. Then X is sent through a channel PY,Z|X that is unknown to the encoder

and the decoder but known to the eavesdropper. A legitimate decoder observes

Y and recovers M̂ = g(Y ), where g : Y → [L] is a decoding function. The

eavesdropper observes Z ∈ Z . Justified by [123] and [124, Lemma 1], we can as-

sume the transition probability distribution is PY |XPZ|X by decomposing PY,Z|X

without loss of optimality.

We assume PY |X is from a set D for decoding, while PZ|X is from a set E

for eavesdropping. Unlike [123], we assume D, E can be infinite, which captures

the infinite variability of real-world signals and their propagation characteristics

in practical applications. Even though their cardinalities can be infinite, we can

often find a finite subset D̃ (or Ẽ) such that every receiver (or eavesdropper) in D̃

(or Ẽ) would be close enough to some D̃ ∈ D̃ (or Ẽ ∈ Ẽ). This idea has appeared

in Section 4.3.2 and also in [152].

The objective is to bound the worst case error probability

Pe := sup
PY |X∈D

P
(
M 6= M̂

)
, (4.2)

while also ensure the secrecy is guaranteed, which is measured by the total vari-

ation distance

γ := sup
PZ|X∈E

‖PM,Z − PM × PZ‖TV (4.3)
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being small.

4.5.2 One-Shot Achievability Results

We then provide the one-shot achievability results of the compound wiretap chan-

nel. Note the result can be viewed as a combination of the covering argument

appeared in Section 4.3 and the one-shot soft covering lemma in [117, Proposition

3]. Other existing one-shot wiretap channel results [87, 130, 187] might also be

utilized in a similar framework as well.

Theorem 4.5.1. Fix any PU,X and any wiretap channel P̂Y |XP̂Z|X . For any

ν ≥ 0, any ϵ1, ϵ2 ≥ 0 and A,B ∈ N, there exists a code for the compound wiretap

channel setting, with message M ∼ Unif[L], satisfying

Pe + ν · γ

≤ Nϵ1(D) sup
PY |X∈D

EY |X∼PY |X

[
min

{
LA2−ι̂(U ;Y ), 1

} ]
+ ϵ1

+ ν ·Nϵ2(E)

(
sup

PZ|X∈E
2 · EZ|X∼PZ|X

[(
1 + 2−ι̂(U ;Z)

)−B
]
+
√

BA−1

)
+ ν · ϵ2,

where we assume (U,X, Y, Z) ∼ PU,XPY |XPZ|X in the expectation, and ι̂(U ;Y ),

ι̂(U ;Z) are the information densities computed for compound channels by the

joint distribution PU,XP̂Y |XP̂Z|X , assuming that ι̂(U ;Y ), ι̂(U ;Z) are almost surely

finite for every PY |X ∈ D, PZ|X ∈ E .

Proof. We first design our coding strategy assuming that the transmission channel

is fixed to P̂X|Y ∈ D and the eavesdropping channel is fixed to P̂X|Z ∈ E .

Let C := ((Ūi, M̄i), Ti)i where (Ti)i is a Poisson process, Ūi
iid∼ PU , and M̄i

iid∼

PM (where PM = Unif[L]). This is a random codebook that is known to both the

encoder and the decoder, and it will be fixed later.

Let A ∼ Unif[A] be independent of (M, C). The encoder observes the mes-

sage M ∼ PM , computes U = UPU×δM (A), and sends the generated X|U ∼
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PX|U . The decoder observes Y and recovers M̂ = MP̂U|Y (·|Y )×PM
. We have

(M,A,U,X, Y, Z) ∼ PM × PA × PU,XP̂Y |XP̂Z|X . For the fixed P̂Y |X ∈ D, we

have:

P
{
M 6= M̂

}
≤ E

[
P
(
(U,M) 6= (U,M)P̂U|Y (·|Y )×PM

|M,A,U, Y
)]

(a)

≤ E
[
min

{
A dPU × δM
dP̂U |Y (·|Y )× PM

(U,M), 1
}]

= E
[
min

{
LA2−ι̂U ;Y (U ;Y ), 1

}]
≤ sup

PY |X∈D
EY |X∼PY |X

[
min

{
LA2−ι̂U ;Y (U ;Y ), 1

}]
(4.4)

=: Pe

where (a) is by the conditional generalized Poisson matching lemma [117] applied

on (M,A, (U,M), Y, P̂U |Y × PM), and we define (4.4) to be Pe.

For the secrecy measure, for the fixed P̂Z|X ∈ E , we have:

E
[∥∥∥P̂M,Z|C(·, ·|C)− PM × P̂Z|C(·|C)

∥∥∥
TV

]
= E

[∥∥∥P̂Z|M,C(·, ·|C)− P̂Z|C(·|C)
∥∥∥

TV

]
≤ E

[∥∥∥P̂Z|M,C(·, ·|C)− P̂Z(·)
∥∥∥

TV

]
+ E

[∥∥∥P̂Z|C(·|C)− P̂Z(·)
∥∥∥

TV

]
(a)

≤ 2 · E
[∥∥∥P̂Z|M,C(·, ·|C)− P̂Z(·)

∥∥∥
TV

]
= 2 · E

[∥∥∥A−1

A∑
a=1

P̂Z|U(·|UPU×δM (a))− P̂Z(·)
∥∥∥

TV

]
(b)

≤ 2 · E
[(
1 + 2−ι̂(U ;Z)

)−B
]
+
√

BA−1

≤ sup
PZ|X∈E

2 · EZ|X∼PZ|X

[(
1 + 2−ι̂(U ;Z)

)−B
]
+
√

BA−1 (4.5)

=: γ
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where (a) is by the convexity of total variation distance, (b) is by [117, Proposition

3] since
{

UPU×δm(a)

}
a∈[A]

iid∼ PU for any m, and we define (4.5) to be γ.

Let Pe

(
PY |X , c

)
denote be the probability of error when the legitimate channel

is PY |X and the codebook is C = c and also let γ
(
PZ|X , c

)
denote the total

variation distance γ when the wiretap channel is PZ|X and the codebook is C =

c. Let Pe(PY |X , PZ|X , c) = Pe(PY |X , c) + ν · γ(PZ|X , c). Let D̃ ⊆ D attain the

minimum in Nϵ1(D) and Ẽ ⊆ E attain the minimum in Nϵ2(E).

Consider any PY |X ∈ D and any PZ|X ∈ E , and let P̃Y |X ∈ D̃, P̃Z|X ∈ Ẽ satisfy

sup
x∈X

∥∥∥PY |X(·|x)− P̃Y |X(·|x)
∥∥∥

TV
≤ ϵ1,

sup
x∈X

∥∥∥PZ|X(·|x)− P̃Z|X(·|x)
∥∥∥

TV
≤ ϵ2.

The total variation distance between the joint distribution of M,A,U,X, Y, Z

under the channel PY |X (or PZ|X) conditional on C = c and the joint distribution

under the channel P̃Y |X (or P̃Z|X) conditional on C = c is also bounded by ϵ1 (or

ϵ2). Therefore, we have
∣∣∣Pe(PY |X , c)− Pe(P̃Y |X , c)

∣∣∣ ≤ ϵ1 and
∣∣∣γ(PZ|X , c)− γ(P̃Z|X , c)

∣∣∣ ≤
ϵ2. Hence,

Pe

(
PY |X , PZ|X , c

)
≤ Pe

(
P̃Y |X , c

)
+ ϵ1 + ν · γ

(
P̃Z|X , c

)
+ ν · ϵ2

≤
∑

P̃Y |X∈D̃

Pe

(
P̃Y |X , c

)
+ ϵ1 + ν ·

∑
P̃Z|X∈Ẽ

γ
(
P̃Z|X , c

)
+ ν · ϵ2.

Therefore,

EC

[
sup

PY |X∈D,PZ|X∈E
Pe(PY |X , PZ|X , C)

]
≤ EC

[ ∑
P̃Y |X∈D̃

Pe

(
P̃Y |X , C

)
+ ϵ1 + ν ·

∑
P̃Z|X∈Ẽ

γ
(
P̃Z|X , C

)
+ ν · ϵ2

]

=
∑

P̃Y |X∈D̃

Pe(P̃Y |X) + ϵ1 + ν ·
∑

P̃Z|X∈Ẽ

γ
(
P̃Z|X

)
+ ν · ϵ2
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≤ |D̃| · Pe + ν · |Ẽ | · γ + ϵ1 + ν · ϵ2.

Hence the proof is completed by the existence of a codebook c such that

sup
PY |X∈D,PZ|X∈E

Pe(PY |X , PZ|X , c)

≤ |D̃| · Pe + ν · |Ẽ | · γ + ϵ1 + ν · ϵ2.

Remark 4.5.2. This scheme can be viewed as a combination of the covering ar-

gument that has been discussed in Section 4.3 and the one-shot soft covering

lemma [117, Proposition 3]. One can possibly provide different one-shot achiev-

ability results utilizing other existing one-shot results on single wiretap chan-

nels [87, 130, 187].

4.5.3 Recovery of the Asymptotic Results

We recover the existing asymptotic results [123] as follows. In [123], they assume

all the random variables are discrete and the channels are memoryless, and D :=

{PY1|X , . . . , PYJ|X} and E := {PZ1|X , . . . , PZK|X} for some finite J,K. The setting

can be understood as Figure 4.3.

By [123], for the discrete memoryless channels, the achievable secrecy rate is

R = max
[
min
j
I(U ;Yj)−max

k
I(U ;Zk)

]
(4.6)

= maxmin
j,k

[I(U ;Yj)− I(U ;Zk)] , (4.7)

where the maximum is taken over all distributions PU,X such that the auxiliary

random variable U satisfies the Markov chain U ↔ X ↔ (Yj, Zk) for j = 1, . . . , J
and k = 1, . . . ,K. This can be understood as the worst-case result, i.e., one

considers the worst receiver in D and the most-powerful eavesdropper in E .
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Figure 4.3: Discrete memoryless compound wiretap channel setting in [123].

To recover the above asymptotic results from our Theorem 4.5.1, fix PU,X , take

P̂Y |XP̂Z|X which minimizes I(U ;Y ) − I(U ;Z), and assume (M,A,U,X, Y, Z) ∼

PM×PA×PU,XP̂Y |XP̂Z|X . Write the information density and mutual information

obtained terms from this distribution as ι̂(U ;Y ), ι̂(U ;Z), Î(U ;Y ), Î(U ;Z). Fix a

coding rate R = Î(U ;Y ) − Î(U ;Z) − ϵ, we are left to show that this rate is

achievable.

When we have i.i.d. sequences (An, Un, Xn, Y n, Zn) ∼ P n
AP

n
U,XP

n
Y |XP

n
Z|X , take

L = b2nRc, A = 2n(I(U ;Z)+ϵ/2) and B = 2n(I(U ;Z)+ϵ/3), by the law of large numbers,

the following terms in Theorem 4.5.1:

LA2−ι̂(U ;Y ) ≤ 2nR+n(I(U ;Z)+ϵ/2)−
∑n

i=1 ι̂(Ui;Yi) → 0,(
1 + 2−ι̂(U ;Z)

)−B (a)

≤ 2
∑n

i=1 ι̂(Ui;Zi)−n(I(U ;Z)+ϵ/3) → 0,
√

BA−1 =
√
2n(I(U ;Z)+ϵ/3)−n(I(U ;Z)+ϵ/2) → 0

exponentially as n→∞, where (a) used (1 + 2−x)−2y ≤ 2x−y. It is left to bound

the ϵ-covering numbers Nϵ1(D), Nϵ2(E) in Theorem 4.5.1. Similar to Section 4.3,

by constructing an ϵ-covers of them and by Proposition 4.4.1, we know Nϵ1(Dn) ≤

Nϵ1/n(D) = O((n/ϵ)|X |·|Y|) and similarly Nϵ2(En) ≤ O((n/ϵ)|X |·|Z|). Hence they

grow much slower than the exponential decrease of above terms in Theorem 4.5.1.
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Therefore we have Pe + ν · γ → 0 as n→∞.
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Chapter 5

One-Shot Channel Simulation

with Differential Privacy

5.1 Overview

In this chapter, we introduce a novel “DP mechanism compressor”, called Pois-

son private representation, designed to compress and exactly simulate any local

randomizer while ensuring local DP, through the use of shared randomness. The

Poisson private representation (PPR) can be viewed as a “meta-mechanism”, in

the sense that it compresses arbitrary differential privacy mechanisms.1 This

chapter is based on [132].

We elaborate on three main advantages of PPR, namely universality, exactness

and communication efficiency.

1. Universality: Unlike dithered-quantization-based approaches which can
1Here “meta-mechanism” means a method that takes a privacy mechanism A, and produces

a new compressed mechanism A′. While it is intuitively similar to a higher-order function in

functional programming, we allow a meta-mechanism to look at the output distribution induced

by A, instead of only treating A as a black box.
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only simulate additive noise mechanisms, PPR can simulate any local or

central DP mechanism with discrete or continuous input and output. More-

over, PPR is universal in the sense that the user and the server only need to

agree on the output space and a proposal distribution, and the user can sim-

ulate any DP mechanism with the same output space. The user can choose

a suitable DP mechanism and privacy budget according to their communi-

cation bandwidth and privacy requirement, without divulging their choice

to the server.

2. Exactness: Unlike previous DP mechanism compressors such as [65, 153,

168], PPR enables exact simulation, ensuring that the reproduced distribu-

tion perfectly matches the original one. Exact distribution recovery offers

several advantages. Firstly, the compressed sample maintains the same

statistical properties as the uncompressed one. If the local randomizer is

unbiased (a crucial requirement for many machine learning tasks like DP-

SGD), the outcome of PPR remains unbiased. In contrast, reconstruction

distributions in prior simulation-based compression methods [65, 153] are

often biased unless specific debiasing steps are performed (only possible for

certain DP mechanisms [153]). Secondly, when the goal is to compute the

mean (e.g., for private mean or frequency estimation problems) and the

local noise is “summable” (e.g., Gaussian noise or other infinitely divisible

distributions [77, 107]), exact distribution recovery of the local noise enables

precise privacy accounting for the final central DP guarantee, without rely-

ing on generic privacy amplification techniques like shuffling [61, 64]. PPR

can compress a central DP mechanism (e.g., the Gaussian mechanism [50])

and simultaneously achieve weaker local DP (i.e., with a larger εlocal) and

stronger central DP (i.e., with a smaller εcentral), while maintaining exactly

the same privacy-utility trade-offs as the uncompressed Gaussian mecha-
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nism.

3. Communication efficiency: PPR compresses the output of any DP

mechanism to a size close to the theoretical lower bound. For a mech-

anism on the data X with output Z, the compression size of PPR is

I(X;Z) + log(I(X;Z) + 1) + O(1), with only a logarithmic gap from the

mutual information lower bound I(X;Z).2 The “O(1)” constant can be

given explicitly in terms of a tunable parameter α > 1 which controls the

trade-off between compression size, computational time and privacy. An

α close to 1 provides a better local DP guarantee, but requires a larger

compression size and longer computational time.

The main technical tool we utilize for PPR is the Poisson functional represen-

tation [117, 118], which provides precise control over the reconstructed joint dis-

tribution in channel simulation problems [12, 13, 22, 40, 68, 76, 83, 118]. Channel

simulation aims to achieve the minimum communication for simulating a channel

(i.e., a specific conditional distribution). Typically, these methods rely on shared

randomness between the user and server, and privacy is only preserved when the

shared randomness is hidden from the adversary. This setup conflicts with local

DP, where the server (which requires access to shared randomness for decoding)

is considered adversarial. To ensure local DP, we introduce a randomized en-

coder based on the Poisson functional representation, which stochastically maps

a private local message to its representation. Hence, PPR achieves order-wise

trade-offs between privacy, communication, and accuracy, while preserving the

original distribution of local randomizers.

2This is similar to channel simulation [83] and the strong functional representation

lemma [118], though [83, 118] do not concern privacy.
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5.2 Related Work

5.2.1 Generic compression of local DP mechanisms

In this work, we consider both central DP [51] and local DP [98, 176]. Recent re-

search has explored methods for compressing local DP randomizers when shared

randomness is involved. For instance, when ε ≤ 1, [11] demonstrated that a

single bit can simulate any local DP randomizer with a small degradation of

utility, as long as the output can be computed using only a subset of the users’

data. [24] proposed another generic compression technique based on rejection

sampling, which compresses a ε-DP mechanism into a 10ε-DP mechanism. [65]

proposed a distributed simulation approach using rejection sampling with shared

randomness, while [153, 168] utilized importance sampling (or more specifically,

minimum random coding [39, 86, 159]). However, all these methods only approx-

imate the original local DP mechanism, unlike our scheme, which achieves an

exact distribution recovery.

5.2.2 Distributed mean estimation under DP

Mean estimation is the canonical problems in distributed learning and analyt-

ics. They have been widely studied under privacy [8, 16, 46, 47], communication

[23, 73, 163], or both constraints [30, 32, 34, 65, 80, 153]. Among them, [8] has

demonstrated that the optimal unbiased mean estimation scheme under local

differential privacy is privUnit [16]. Subsequently, communication-efficient mech-

anisms introduced by [65, 94, 153] aimed to construct communication-efficient

versions of privUnit, either through distributed simulation or discretization. How-

ever, these approaches only approximate the privUnit distribution, while our pro-

posed method ensures exact distribution recovery.
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5.2.3 Distributed channel simulation

Our approach relies on the notion of channel simulation [12, 13, 22, 40, 68, 76,

83, 118]. One-shot channel simulation is a lossy compression task, which aims to

find the minimum amount of communications over a noiseless channel that is in

need to “simulate” some channel PZ|X (a specific conditional distribution). By

[83, 118], the average communication cost is I(X;Z) +O(log(I(X;Z))). In [83],

algorithms based on rejection sampling are proposed, and it is further generalized

in [71] by introducing the greedy rejection coding. Dithered quantization [191] has

also been used to simulate an additive noise channel in [3] for neural compression.

As also shown in [3], the time complexity of channel simulation protocols (e.g., in

[118]) is usually high, and [68, 76, 166] try to improve the runtime under certain

assumptions. Moreover, channel simulation tools have also been used in neural

network compression [86], image compression via variational autoencoders [69],

diffusion models with perfect realism [167] and differentially private federated

learning [153].

5.3 Preliminaries

We begin by reviewing the formal definitions of differential privacy (DP). We

consider two models of DP data analysis. In the central model, introduced in

[51], the data of the individuals is stored in a database X ∈ X by the server.

The server is then trusted to perform data analysis whose output Z = A(X) ∈ Z

(where A is a randomized algorithm), which is sent to an untrusted data analyst,

does not reveal too much information about any particular individual’s data.

While this model requires a higher level of trust than the local model, it is possible

to design significantly more accurate algorithms. We say that two databases

X,X ′ ∈ X are neighboring if they differ in a single data point. More generally,
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we can consider a symmetric neighbor relation N ⊆ X 2, and regard X,X ′ as

neighbors if (X,X ′) ∈ N .

On the other hand, in the local model, each individual (or client) randomizes

their data before sending it to the server, meaning that individuals are not re-

quired to trust the server. A local DP mechanism [98] is a local randomizer A

that maps the local data X ∈ X to the output Z = A(X) ∈ Z. Note that here

X is the data at one user, unlike central-DP where X is the database with the

data of all users. We now review the notion of (ε, δ)-central and local DP.

Definition 5.3.1 (Differential privacy [51, 98]). Given a mechanism A which

induces the conditional distribution PZ|X of Z = A(X), we say that it satisfies

(ε, δ)-DP if for any neighboring (x, x′) ∈ N and S ⊆ Z , it holds that

Pr(Z ∈ S |X = x) ≤ eε Pr(Z ∈ S |X = x′) + δ.

In particular, if N = X 2, we say that the mechanism satisfies (ε, δ)-local DP

[98].3

When a mechanism satisfies (ε, 0)-central/local DP, we will refer to it simply

as ε-central/local DP. ε-DP can be generalized to metric privacy by considering

a metric dX (x, x′) over X [6, 29].

Definition 5.3.2 (ε ·dX -privacy [6, 29]). Given a mechanism A with conditional

distribution PZ|X , and a metric dX over X , we say that A satisfies ε · dX -privacy

if for any x, x′ ∈ X , S ⊆ Z , we have

Pr(Z ∈ S |X = x) ≤ eε·dX (x,x′) Pr(Z ∈ S |X = x′).

This recovers the original ε-central DP by considering dX to be the Hamming

distance among databases, and recovers the original ε-local DP by considering

dX to be the discrete metric [29].
3Equivalently, local DP can be viewed as a special case of central DP with dataset size n = 1.
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The reason we use X to refer to both the database in central DP and the

user’s data in local DP is that our proposed method can compress both central

and local DP mechanisms in exactly the same manner. In the following sections,

the mechanism A to be compressed (often written as a conditional distribution

PZ|X) can be either a central or local DP mechanism, and the neighbor relation

N can be any symmetric relation. The “encoder” refers to the server in central

DP, or the user in local DP. The “decoder” refers to the data analyst in central

DP, or the server in local DP.

5.4 Poisson Private Representation

As introduced in Chapter 2, given (Ti)i, a Poisson process with rate 1 (i.e., T1, T2−

T1, T3 − T2, . . .
iid∼ Exp(1)) that is independent of Zi

iid∼ Q for i = 1, 2, . . ., the

Poisson functional representation [117, 118] selects the point Z := ZK where

K = argminiTi ·
(dP
dQ(Zi)

)−1

.

The calculation ofK can be viewed as a search problem over a Poisson process.

The “marked” Poisson process (Zi, Ti)i supports a “query operation” provided

by the Poisson functional representation, where one can input a distribution P

over Z, and obtain one sample with distribution P , i.e., the Poisson functional

representation guarantees that Z ∼ P [118].

To simulate a DP mechanism with a conditional distribution PZ|X using the

Poisson functional representation, we can use (Zi)i as the shared randomness be-

tween the encoder and the decoder. 4 Upon observing X, the encoder generates

the Poisson process (Ti)i, computes T̃i and K using P = PZ|X , and transmits K
4The original Poisson functional representation [117, 118] uses the whole (Zi, Ti)i as the

shared randomness. It is clear that (Ti)i is not needed by the decoder, and hence we can use

only (Zi)i as the shared randomness.
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to the decoder. The decoder simply outputs ZK , which follows the conditional

distribution PZ|X . The issue is that K is a function of X and the shared random-

ness (Zi, Ti)i, and a change of X may affect K in a deterministic manner, and

hence this method cannot be directly used to protect the privacy of X.

Poisson private representation. To ensure privacy, we introduce ran-

domness in the encoder by a generalization of the Poisson functional repre-

sentation, which we call Poisson private representation (PPR) with parameter

α ∈ (1,∞], proposal distribution Q and the simulated mechanism PZ|X . Both

X and Z can be discrete or continuous, though as a regularity condition, we

require PZ|X(·|X) to be absolutely continuous with respect to Q almost surely.

The PPR-compressed mechanism is given as:

1. We use (Zi)i=1,2,..., Zi
iid∼ Q as the shared randomness between the encoder

and the decoder. Practically, the encoder and the decoder can share a

random seed and generate Zi
iid∼ Q from it using a pseudorandom number

generator.5

2. The encoder knows (Zi)i, X, PZ|X and performs the following steps:

(a) Generates the Poisson process (Ti)i with rate 1.

(b) Computes T̃i := Ti · (dP
dQ(Zi))

−1, where P := PZ|X(·|X). Take T̃i = ∞ if
dP
dQ(Zi) = 0.

(c) Generates K ∈ Z+ using local randomness with

Pr(K = k) =
T̃−α
k∑∞

i=1 T̃
−α
i

.

5We note that our analyses assume that the adversary knows both the index K and the

shared randomness (Zi)i, and we prove that the mechanism is still private despite the shared

randomness between the encoder and the decoder, since the privacy is provided by locally

randomizing K in Step 2c.
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(d) Compress K (e.g., using Elias delta coding [60]) and sends K.

3. The decoder, which knows (Zi)i, K, outputs Z = ZK .

We will provide an algorithm with implementation details later.

Note that when α = ∞, we have K = argminiT̃i, and PPR reduces to the

original Poisson functional representation [117, 118]. PPR can simulate the pri-

vacy mechanism PZ|X precisely, as shown in the following proposition. The proof

is in Appendix C.1.

Proposition 5.4.1. The output Z of PPR follows the conditional distribution

PZ|X exactly.

Due to the exactness of PPR, it guarantees unbiasedness for tasks such as

DME. If the goal is only to design a stand-alone privacy mechanism, we can

focus on the privacy and utility of the mechanism without studying the output

distribution. However, if the output of the mechanism is used for downstream

tasks (e.g., for DME, after receiving information from clients, the server sends

information about the aggregated mean to data analysts, where central DP is

crucial), having an exact characterization of the conditional distribution of the

output given the input allows us to obtain precise (central) privacy and utility

guarantees.

Notably, PPR is universal in the sense that only the encoder needs to know

the simulated mechanism PZ|X . The decoder can decode the index K as long as

it has access to the shared randomness (Zi)i. This allows the encoder to choose

an arbitrary mechanism PZ|X with the same Z, and adapt the choice of PZ|X

to the communication and privacy constraints without explicitly informing the

decoder which mechanism is chosen.

Practically, the algorithm cannot compute the whole infinite sequence (T̃i)i.

We can truncate the method and only compute T̃i, . . . , T̃N for a large N and
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select K ∈ {1, . . . , N}, which incurs a small distortion in the distribution of

Z.6 While this method is practically acceptable, it might defeat the purpose of

having an exact algorithm that ensures the correct conditional distribution PZ|X .

In Appendix C.2, we will present an exact algorithm for PPR that terminates

in a finite amount of time, using a reparametrization that allows the encoder to

know when the optimal point Zi has already been encountered (see Algorithm 1

in Appendix C.2).

By the lower bound for channel simulation [13, 118], we must have H(K) ≥

I(X;Z), i.e., the compression size is at least the mutual information between

the data X and the output Z. The following result shows that the compression

provided by PPR is “almost optimal”, i.e., close to the theoretical lower bound

I(X;Z). The proof is given in Appendix C.6.

Theorem 5.4.2 (Compression size of PPR). For PPR with parameter α > 1,

when the encoder is given the input x, the message K given by PPR satisfies

E[logK] ≤ D(P‖Q) + (log(3.56))/min{(α− 1)/2, 1},

where P := PZ|X(·|x). As a result, when the input X ∼ PX is random, taking

Q = PZ, we have

E[logK] ≤ I(X;Z) + (log(3.56))/min{(α− 1)/2, 1}.

Note that the running time complexity (which depends on the number of

samples Zi the algorithm must examine before outputting the index K) can be
6To compare to the minimal random coding (MRC) [39, 86, 159] scheme in [153], which also

utilizes a finite number N of samples (Zi)i=1,...,N , while truncating the number of samples to

N in both PPR and MRC results in a distortion in the distribution of Z that tends to 0 as

N → ∞, the difference is that logK (which is approximately the compression size) in MRC

grows like logN , whereas logK does not grow as N → ∞ in PPR. The size N in truncated

PPR merely controls the trade-off between accuracy of the distribution of Z and the running

time of the algorithm.
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quite high. Since E[logK] ≈ I(X;Z), K (and hence the running time) is at least

exponential in I(X;Z). See more discussions in Section 5.9.

If a prefix-free encoding of K is required, then the number of bits needed

is slightly larger than log2K. For example, if Elias delta code [60] is used, the

expected compression size is ≤ E[log2K] + 2 log2(E[log2K] + 1) + 1 bits. If the

Shannon code [155] (an almost-optimal prefix-free code) for the Zipf distribution

p(k) ∝ k−λ with λ = 1 + 1/E[log2K] is used, the expected compression size is

≤ E[log2K]+log2(E[log2K]+1)+2 bits (see [118]). Both codes yield an I(X;Z)+

O(log I(X;Z)) size, within a logarithmic gap from the lower bound I(X;Z). This

is similar to some other channel simulation schemes such as [22, 83, 118], though

these schemes do not provide privacy

Remark 5.4.3. Note that PPR requires a variable-length code to encode the in-

dex K ∈ Z+, which is common in channel simulation [83, 118] and distributed

mean estimation [163]. If we impose a fixed limit of b bits on the encoding,

since Theorem 5.4.2 and Markov’s inequality yields Pr(log2K > b) ≤ Pe :=

I(X;Z)/b+ log2(3.56)/(bmin{(α− 1)/2, 1})

Note that if PZ|X is ε-DP, then by definition, for any z ∈ Z and x, x0 ∈ X , it

holds that

D
(
PZ|X=x

∥∥PZ|X=x0

)
= EZ∼PZ|X=x

[
log
( dPZ|X=x

dPZ|X=x0

(Z)

)]
≤ ε log e.

Setting the proposal distribution Q = PZ|X=x0 for an arbitrary x0 ∈ X gives the

following bound.

Corollary 5.4.4 (Compression size under ε-LDP). Let PZ|X satisfy ε-differential

privacy. Let x0 ∈ X and Q = PZ|X=x0. Then for PPR with parameter α > 1,

the expected compression size is at most ℓ + log2(ℓ + 1) + 2 bits, where ℓ :=

ε log2 e+ (log2(3.56))/min {(α− 1)/2, 1}.
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Next, we analyze the privacy guarantee of PPR. The PPR method induces

a conditional distribution P(Zi)i,K|X of the knowledge of the decoder ((Zi)i, K),

given the data X. To analyze the privacy guarantee, we study whether the

randomized mapping P(Zi)i,K|X from X to ((Zi)i, K) satisfies ε-DP or (ε, δ)-DP. 7

This is similar to the privacy condition in [153], and is referred as decoder privacy

in [154], which is stronger than database privacy which concerns the privacy of

the randomized mapping from X to the final output Z [154] (which is simply the

privacy of the original mechanism PZ|X to be compressed since PPR simulates

PZ|X precisely). Since the decoder knows ((Zi)i, K), more than just the final

output Z, we expect that the PPR-compressed mechanism P(Zi)i,K|X to have a

worse privacy guarantee than the original mechanism PZ|X , which is the price

of having a smaller communication cost. The following result shows that, if

the original mechanism PZ|X is ε-DP, then the PPR-compressed mechanism is

guaranteed to be 2αε-DP.

Theorem 5.4.5 (ε-DP of PPR). If the mechanism PZ|X is ε-differentially private,

then PPR P(Zi)i,K|X with parameter α > 1 is 2αε-differentially private.

Similar results also apply to (ε, δ)-DP and metric DP.

Theorem 5.4.6 ((ε, δ)-DP of PPR). If the mechanism PZ|X is (ε, δ)-differentially

private, then PPR P(Zi)i,K|X with parameter α > 1 is (2αε, 2δ)-differentially

private.
7Note that the encoder does not actually send ((Zi)i,K); it only sends K. The common

randomness (Zi)i is independent of the data X, and can be pre-generated using a common

random seed in practice. While this seed must be communicated between the client and the

server as a small overhead, the client and the server only ever need to communicate one seed to

initialize a pseudorandom number generator, that can be used in all subsequent privacy mech-

anisms and communication tasks (to transmit high-dimensional data or use DP mechanisms for

many times). The conditional distribution P(Zi)i,K|X is only relevant for privacy analysis.
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Theorem 5.4.7 (Metric privacy of PPR). If the mechanism PZ|X satisfies ε ·dX -

privacy, then PPR P(Zi)i,K|X with parameter α > 1 satisfies 2αε · dX -privacy.

Refer to Appendices C.3 and C.4 for the proofs. In Theorem 5.4.5 and The-

orem 5.4.6, PPR imposes a multiplicative penalty 2α on the privacy parameter

ε. This penalty can be made arbitrarily close to 2 by taking α close to 1, which

increases the communication cost (see Theorem 5.4.2). Compared to minimal

random coding which has a factor 2 penalty in the DP guarantee [86, 153], the

2α factor in PPR is slightly larger, though PPR ensures exact simulation (unlike

[86, 153] which are approximate). The method in [65] does not have a penalty

on ε, but the utility and compression size depends on computational hardness

assumptions on the pseudorandom number generator, and there is no guarantee

that the compression size is close to the optimum. In comparison, the com-

pression and privacy guarantees of PPR are unconditional and does not rely on

computational assumptions. In order to make the penalty of PPR close to 1, we

have to consider (ε, δ)-differential privacy, and allow a small failure probability,

i.e., a small increase in δ. The following result shows that PPR can compress any

ε-DP mechanism into a (≈ ε, ≈ 0)-DP mechanism as long as α is close enough

to 1 (i.e., almost no inflation). More generally, PPR can compress an (ε, δ)-DP

mechanism into an (≈ ε, ≈ 2δ)-DP mechanism for α close to 1. The proof is in

Appendix C.5.

Theorem 5.4.8 (Tighter (ε, δ)-DP of PPR). If the mechanism PZ|X is (ε, δ)-

differentially private, then PPR P(Zi)i,K|X with parameter α > 1 is (αε+ ε̃, 2(δ+

δ̃))-differentially private, for every ε̃ ∈ (0, 1] and δ̃ ∈ (0, 1/3] that satisfy α ≤

e−4.2δ̃ε̃2/(− ln δ̃) + 1.

Remark 5.4.9. For the computation-privacy trade-off, in general, a larger α results

in a smaller compression size (i.e., smaller K and hence shorter running time)
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but larger privacy leakage, while a smaller α leads to worse compression but

better privacy guarantee. Regarding the randomness requirement, although in

the theory of this paper we assume “unlimited common randomness”, it is of

interest to study the trade-off between the amount of common randomness used

and the required communication cost, similar to the study in [40]. We leave the

investigation of the randomness-communication-privacy trade-off for future work.

5.5 PPR on Distributed Mean Estimation

We demonstrate the efficacy of PPR by applying it to distributed mean estimation

(DME) [163]. Note that this problem is closely related to the federated learning

problems [96, 105], or similar stochastic optimization problems, e.g., [139]. In

the DME problem, for each iteration, the server sends a message to update the

global model by a noisy mean of the local model updates. The noisy estimation

is usually from some DME framework, hence a distributed differentially-private

SGD (or a differentially-private federated learning) can be constructed based on

a differentially-private DME framework. For such problems, as discussed in [75],

if the estimate of the gradient is unbiased in each round, the convergence rates

of SGD are dependent on the ℓ2 estimation error. In short, private DME is the

core sub-routine in various private and federated optimization algorithms, such

as DP-SGD [1] or DP-FedAvg [139].

In such distributed settings, each local client communicates a length-limited

message to the central server, and the privacy (explicit differential privacy guar-

antee [51]) of the data can be guaranteed by adding noise to the estimated mean

at the central server before releasing it to downstream components. For example,

after estimating the average model update, the central server corrupts it with the

addition of Gaussian noise). This is usually called the trusted server or central
86



DP guarantee (see Section 5.3 for definitions), since the central server is trusted

in privatizing the computed mean, and it is one of the most common methods

in practice for federated learning and analytics. However, as we have discussed

above, our scheme not only achieves the same level of central DP guarantee, but

also ensures local DP guarantee.

Consider the following general distributed setting: each of n clients holds a

local data point Xi ∈ X , and a central server aims to estimate a function of all

local data µ (Xn), subject to privacy and local communication constraints. To

this end, each client i compresses Xi into a message Zi ∈ Zn via a local encoder,

and we require that each Zi can be encoded into a bit string with an expected

length of at most b bits. Upon receiving Zn := (Z1, . . . , Zn), the central server

decodes it and outputs a DP estimate µ̂. Two DP criteria can be considered: the

(ε, δ)-central DP of the randomized mapping from Xn to µ̂, and the (ε, δ)-local

DP of the randomized mapping from Xi to Zi for each client i.

In the distributed L2 mean estimation problem,

X = Bd(C) :=
{
v ∈ Rd

∣∣ ‖v‖2 ≤ C
}
,

and the central server aims to estimate the sample mean µ(Xn) := 1
n

∑n
i=1Xi

by minimizing the mean squared error (MSE) E[‖µ− µ̂‖22]. It is recently proved

that under ε-local DP, privUnit [8, 16] is the optimal mechanism. By simulating

privUnit with PPR and applying Corollary 5.4.4 and Theorem 5.4.6, we immedi-

ately obtain the following corollary:

Corollary 5.5.1 (PPR simulating privUnit). Let P be the density defined by

ε-privUnit2 [16, Algorithm 1]. Let Q be the uniform density over the sphere

Sd−1 (1/m) where the radius 1/m is defined in [16, (15)]. Let r∗ := eε. Then the

outcome of PPR (see Algorithm 1) satisfies (1) 2αε-local DP; and (2) (αε+ ε̃, 2δ̃)-

DP for any α ≤ e−4.2δ̃ε̃2/ log(1/δ̃) + 1. In addition, the average compression size
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is at most ℓ+ log2(ℓ+ 1) + 2 bits where ℓ := ε+ (log2 (3.56))/min{(α− 1)/2, 1}.

Moreover, PPR achieves the same MSE as ε-privUnit2, which is O (d/min (ε, ε2)).

Note that PPR can simulate arbitrary local DP mechanisms. However, we

present only the result of privUnit2 because it achieves the optimal privacy-

accuracy trade-off. Besides simulating local DP mechanisms, PPR can also com-

press central DP mechanisms while still preserving some (albeit weaker) local

guarantees. We give a corollary of Theorems 5.4.2 and 5.4.6. The proof is in

Appendix C.8.

Corollary 5.5.2 (PPR-compressed Gaussian mechanism). Let ε, δ ∈ (0, 1). Con-

sider the Gaussian mechanism PZ|X(·|x) = N (x, σ
2

n
Id), and the proposal distribu-

tion Q = N (0, (C
2

d
+ σ2

n
)Id), where σ ≥ C

√
2 ln(1.25/δ)

ε
. For each client i, let Zi be

the output of PPR applied on PZ|X(·|Xi). We have:

• µ̂(Zn) := 1
n

∑
i Zi yields an unbiased estimator of µ(Xn) = 1

n

∑n
i=1Xi sat-

isfying (ε, δ)-central DP and has MSE E[‖µ− µ̂‖22] = σ2d/n2.

• As long as ε < 1/
√
n, PPR satisfies (2α

√
nε, 2δ)-local DP.8

• The average per-client communication cost is at most ℓ + log2(ℓ + 1) + 2

bits where

ℓ :=
d

2
log2

(C2n

dσ2
+ 1
)
+ ηα ≤

d

2
log2

( nε2

2d ln(1.25/δ) + 1
)
+ ηα,

where ηα := (log2(3.56))/min{(α− 1)/2, 1}.
8The restricted range on ε < 1/

√
n is due to the simpler privacy accountant [49]. By using

the Rényi DP accountant instead, one can achieve a tighter result that applies to any n. We

present the Rényi DP version of the corollary in Appendix C.7. Moreover, in the context of

federated learning, n refers to the number of clients in each round, which is typically much

smaller than the total number of clients. For example, as observed in [96], the per-round cohort

size in Google’s FL application typically ranges from 103 to 105, significantly smaller than the

number of trainable parameters d ∈ [106, 109] or the number of available users N ∈ [106, 108].
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A few remarks are in order. First, notice that when α is fixed, for an

O( C2d
n2ε2

log(1/δ)) MSE, the per-client communication cost is

O
(
d log

( nε2

d log(1/δ) + 1
)
+ 1
)
,

which is at least as good as the O(nε2/ log(1/δ) + 1) bound in [34, 163], and can

be better than O(nε2/ log(1/δ) + 1) when n � d. Hence, the PPR-compressed

Gaussian mechanism is order-wise optimal. Second, compared to other works

that also compress the Gaussian mechanism, PPR is the only lossless compressor;

schemes based on random sparsification, projection, or minimum random coding

(e.g., [34, 168]) are lossy, i.e., they introduce additional distortion on top of the

DP noise. Finally, other DP mechanism compressors tailored to local randomizers

[65, 153] do not provide the same level of central DP guarantees when applied to

local Gaussian noise since the reconstructed noise is no longer Gaussian. Refer

to Section 5.6 for experiments.

5.6 Empirical Results on Distributed Mean Es-

timation

We empirically evaluate our scheme on the Distributed Mean Estimation (DME)

problem (which is formally introduced in Section 5.5).

We examine the privacy-accuracy-communication trade-off, and compare it

with the Coordinate Subsampled Gaussian Mechanism (CSGM) [34, Algorithm

1], an order-optimal scheme for DME under central DP. In [34], each client only

communicates partial information (via sampling a subset of the coordinates of

the data vector) about its samples to amplify the privacy, and the compression

is mainly from subsampling. Moreover, CSGM only guarantees central DP.
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Figure 5.1: MSE of distributed mean estimation for PPR and CSGM [34] for

different ε’s.

5.6.1 Experiment

We use the same setup that has been used in [34]: consider n = 500 clients, and

the dimension of local vectors is d = 1000, each of which is generated according to

Xi(j)
i.i.d.∼ (2 · Ber(0.8)− 1), where Ber(0.8) is a Bernoulli random variable with

parameter p = 0.8. We require (ε, δ)-central DP with δ = 10−6 and ε ∈ [0.05, 6]

and apply the PPR with α = 2 to simulate the Gaussian mechanism, where the

privacy budgets are accounted via Rényi DP.

We compare the MSE of PPR (α = 2, using Theorem 5.4.2) and CSGM un-
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der various compression sizes in Figure 5.1 (the y-axis is in logarithmic scale).9

Note that the MSE of the (uncompressed) Gaussian mechanism coincides with

the CSGM with 1000 bits, and the PPR with only 400 bits. We see that PPR

consistently achieves a smaller MSE compared to CSGM for all ε’s and compres-

sion sizes considered. For ϵ = 1 and we compress d = 1000 to 50 bits, CSGM

has an MSE 0.1231 , while PPR has an MSE 0.08173, giving a 33.61% reduction.

For ϵ = 0.5 and we compress d = 1000 to 25 bits (the case of high compression

and conservative privacy), CSGM has an MSE 0.3877, while PPR has an MSE

0.3011, giving a 22.33% reduction. These reductions are significant, since all con-

sidered mechanisms are asymptotically close to optimal and a large improvement

compared to an (almost optimal) mechanism is unexpected. See Section C.10 for

more about MSE against the compression sizes.

We also emphasize that PPR provides both central and local DP guarantees

according to Theorem 5.4.5, 5.4.6 and 5.4.8, benefiting from the fact that PPR

exactly compresses the privacy mechanism and hence control the distributions

exactly. In contrast, CSGM only provides central DP guarantees. Another ad-

vantage of PPR under conservative privacy (small ϵ) is that the trade-off between

ϵ and MSE of PPR exactly coincides with the trade-off of the Gaussian mechanism

for small ϵ (see Figure 5.1), and CSGM is only close to (but strictly worse than)

the Gaussian mechanism. This means that for small ϵ, PPR provides compres-

sion without any drawback in terms of ϵ-MSE trade-off compared to the Gaussian

9Source code: https://github.com/cheuktingli/PoissonPrivateRepr. Experiments

were executed on M1 Pro Macbook, 8-core CPU (≈ 3.2 GHz) with 16GB memory. For PPR

under a privacy budget ε and communication budget b, we find the largest ε′ ≤ ε such that

the communication cost bound in Theorem 5.4.2 (with Shannon code [155]) for simulating the

Gaussian mechanism with (ε′, δ)-central DP is at most b, and use PPR to simulate this Gaus-

sian mechanism. Thus, MSE of PPR in Figure 5.1 becomes flat for large ε, as PPR falls back

to using a smaller ε′ instead of ε due to the communication budget.

91

https://github.com/cheuktingli/PoissonPrivateRepr


mechanism (which requires an infinite size communication to exactly realize).

Moreover, although directly applying PPR on the d-dimensional vectors is

impractical for a large d, one can ensure an efficient O(d) running time (see

Section 5.9 for details) by breaking the vector with d = 1000 dimensions into

small chunks of fixed lengths (we use dchunk = 50 dimensions for each chunk), and

apply the PPR to each chunk. We call it the sliced PPR in Figure 5.1. Though

the sliced PPR has a small penalty on the MSE (as shown in Figure 5.1), it still

outperforms the CSGM (400 bits) for the range of ε in the plot. For the sliced

PPR for one d = 1000 vector, when ϵ = 0.05, the running time is 1.3348 seconds

on average.10 For larger ϵ’s, we can choose smaller dchunk’s to have reasonable

running time: For ϵ = 6 and dchunk = 2 we have an average running time 0.0127

seconds and with dchunk = 4 we have an average running time 0.6343 seconds; for

ϵ = 10 and dchunk = 2 we have an average running time 0.0128 seconds and with

dchunk = 4 we have an average running time 0.7301 seconds. See Section 5.9 for

more experiments on the running time of the sliced PPR.

5.7 Applications to Metric Privacy

Metric privacy [6, 29] (see Definition 5.3.2) allows users to send privatized version

Z ∈ Rd of their data vectors X ∈ Rd to an untrusted server, so that the server

can know X approximately but not exactly. A popular mechanism is the Laplace

mechanism [6, 29, 66, 67], where a d-dimensional Laplace noise is added to X.

The conditional density function of Z given X is fZ|X(z|x) ∝ e−εdX (x,z), where

ε is the privacy parameter, and the metric dX (x, z) = ‖x − z‖2 is the Euclidean

distance. The Laplace mechanism achieves ε · dX -privacy, and has been used, for
10The running time is calculated by 1000

50 ×Tchunk, where each chunk’s running time Tchunk is

averaged over 1000 trials. The estimate of the mean of Tchunk is 0.0667, whereas the standard

deviation is 0.2038.
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example, to privatize high-dimensional word embedding vectors [66, 67], or for

geo-indistinguishability [6] to privatize the users’ locations, where the purpose

is to allow users to send privatized version of their location information to an

untrusted server, so that the server can approximate the locations (to provide

some remote services) without knowing the exact locations.

A problem is that the real vector Z cannot be encoded into finitely many bits.

To this end, [6] studies a discrete Laplace mechanism where each coordinate of Z

is quantized to a finite number of levels, introducing additional distortion to Z.

PPR provides an alternative compression method that preserves the statistical

behavior of Z (e.g., unbiasedness) exactly. We give a corollary of Theorems 5.4.2

and 5.4.7. The proof is in Appendix C.9. Refer to Section 5.8 for an experiment

on metric privacy.

Corollary 5.7.1 (PPR-compressed Laplace mechanism). Consider PPR applied

to the Laplace mechanism PZ|X where X ∈ Bd(C) = {x ∈ Rd | ‖x‖2 ≤ C}, with

a proposal distribution Q = N (0, (C
2

d
+ d+1

ε2
)Id). It achieves an MSE d(d+1)

ε2
, a

2αϵ · dX -privacy, and a compression size at most ℓ+ log2(ℓ+ 1) + 2 bits, where

ℓ :=
d

2
log2

(
2

e

(
C2ε2

d
+ d+ 1

))
− log2

Γ(d+ 1)

Γ(d
2
+ 1)

+ ηα,

where ηα := (log2(3.56))/min{(α− 1)/2, 1}.

5.8 Empirical Results on Metric Privacy

In [6], to privatize the users’ location information for some remote services pro-

vided by an untrusted server, 2-dimensional Laplace noises have been used [6]

to obtain metric privacy, where the continuous planar Laplace mechanism [6] is

given by the following conditional density function fZ|X(z|x) = ε2

2π
e−εdX (x,z).

We use PPR to simulate the Laplace mechanism [6, 66, 67] fZ|X(z|x) ∝

e−εdX (x,z) discussed in Section 5.7. We consider X ∈ Bd(C) where C = 10000
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and d = 500. A large number of dimensions d is common, for example, in

privatizing word embedding vectors [66, 67]. We compare the performance of

PPR-compressed Laplace mechanism (Corollary 5.7.1) with the discrete Laplace

mechanism [6]. The discrete Laplace mechanism is described as follows (slightly

modified from [6] to work for the d-ball Bd(C)): 1) generate a Laplace noise Y

with probability density function fY (y) ∝ e−ε∥y∥2 ; 2) compute Ẑ = X + Y ; 3)

truncate Ẑ to the closest point Z in Bd(C); and 4) quantize each coordinate of

Z by a quantizer with step size u > 0. The number of bits required by the

discrete Laplace mechanism is dlog2(Vol(Bd(C))/ud)e, where Vol(Bd(C))/ud is

the number of quantization cells (hypercube of side length u) inside Bd(C). The

parameter u is selected to fit the number of bits allowed.

Figure 5.2 shows the mean squared error of PPR-compressed Laplace mech-

anism (α = 2) and the discrete Laplace mechanism for different ε’s, when the

number of bits is limited to 500, 1000 and 1500.11 We can see that PPR performs

better for larger ϵ or smaller MSE, whereas the discrete Laplace mechanism per-

forms better for smaller ϵ or larger MSE. The performance of discrete Laplace

mechanism for smaller ϵ is due to the truncation step which limits Z to Bd(C),

which reduces the error at the expense of introducing distortion to the distribution

of Z, and making Z a biased estimate of X. In comparison, PPR preserves the

Laplace conditional distribution fZ|X exactly, and hence produces an unbiased

Z.

11The MSE of PPR is computed using the closed-form formula in Corollary 5.7.1, which is

tractable since Z follows the Laplace conditional distribution fZ|X exactly. The number of

bits used by PPR is given by the bound in Corollary 5.7.1. The MSE of the discrete Laplace

mechanism is estimated using 5000 trials per data point. Although we do not plot the error

bars, the largest coefficient of variation of the sample mean (i.e., standard error of the mean

divided by the sample mean) is only 0.00117, which would be unnoticeable even if the error

bars were plotted.
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Figure 5.2: MSE of PPR-compressed Laplace mechanism and discrete Laplace

mechanism [6] for different ε’s.
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5.9 Running Time of PPR

5.9.1 Discussions

While PPR is communication-efficient, having only a logarithmic gap from the

theoretical lower bound on the compression size as shown in Theorem 5.4.2, the

running time complexity can be high. However, we note that an exponential

complexity is also needed in sampling methods that do not ensure privacy, such

as [86, 135]. It has been proved in [3] that no polynomial time general sampling-

based method exists (even without privacy constraint), if RP 6= NP . All existing

polynomial time exact channel simulation methods can only simulate specific

noisy channels.12 Hence, a polynomial time algorithm for exactly compressing a

general DP mechanism is likely nonexistent.

Nevertheless, this is not an obstacle for simulating local DP mechanisms, since

the mutual information I(X;Z) for a reasonable local DP mechanism must be

small, or else the leakage of the data X in Z would be too large. For an ε-

local DP mechanism, we have I(X;Z) ≤ min{ε, ε2} (in nats) [43]. Hence, the

PPR algorithm can terminate quickly even if has a running time exponential in

I(X;Z).

Another way to ensure a polynomial running time is to divide the data into

small chunks and apply the mechanism to each chunk separately. For example,

to apply the Gaussian mechanism to a high-dimensional vector, we break it into

several shorter vectors and apply the mechanism to each vector. Experiments in

Section 5.6 show that this greatly reduces the running time while having only a

small penalty on the compression size.

12For example, [72] and dithered-quantization-based schemes [92, 154] can only simulate

additive noise mechanisms. Among these existing works, only [154] ensures local DP.
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5.9.2 Empirical Results

We show empirical results on the running time of PPR on distributed mean

estimation task, as discussed in Section 5.5 and Section 5.6.

5.9.3 Running Time of Sliced PPR against chunk size

As discussed in Section 5.6, we can ensure an O(d) running time for the Gaussian

mechanism by using the sliced PPR, where the d-dimensional vector X is divided

into dd/dchunke chunks, each with a fixed dimension dchunk (possibly except the

last chunk if dchunk is not a factor of d). The average total running time is

dd/dchunkeTchunk, where Tchunk is the average running time of PPR applied on one

chunk.13 Therefore, to study the running time of the sliced PPR, we study how

Tchunk depend on dchunk.

In Figure 5.3 we show the running time Tchunk of PPR applied on one chunk

with dimension dchunk, where dchunk ranges from 40 to 110.14 With d = 1000,

n = 500, ε = 0.05 and δ = 10−6, we require a Gaussian mechanism with noise

N (0, nσ̃2Idchunk) where σ̃ = 1.0917 at each user in order to ensure (ε, δ)-central

DP. We record the mean Tchunk and the standard error of the mean15 of the

running time of PPR applied to simulate this Gaussian mechanism (averaged

over 20000 trials).

13Note that the chunks may be processed in parallel for improved efficiency.
14Experiments were executed on M1 Pro Macbook, 8-core CPU (≈ 3.2 GHz) with 16GB

memory.
15The standard error of the mean is given by σmean = σtime/

√
ntrials, where σtime is the

standard deviation of the running time among the ntrials = 20000 trials.
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Figure 5.3: Average running time of PPR applied to a chunk of dimension dchunk,

with error bars indicating the interval Tchunk± 2σmean, where Tchunk is the sample

mean of the running time, and σmean is the standard error of the mean (see

Footnote 15).

5.9.4 Running Time of PPR against privacy budget ϵ

We plot the average running time (over 20000 trials for each data point) against

the values of ϵ ∈ [0.06, 10], with dchunk always chosen to be 4. The average

running time is denoted as Tchunk, and the standard error of the mean is given by

σmean = σtime/
√
ntrials, where σtime is the standard deviation of the running time

among the σtime = 20000 trials.
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Figure 5.4: Average running time (over 20000 trials), dchunk = 4 and ε ∈ [0.06, 10],

with error bars indicating the interval Tchunk± 2σmean, where Tchunk is the sample

mean of the running time, and σmean is the standard error of the mean.
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Chapter 6

Discussion and Conclusion

In conventional network information theory, the information-theoretic limits are

investigated asymptotically in the large blocklength regime, based on the law of

large numbers. However, this assumption is impractical, as packets have bounded

lengths. Over the past decade, finite blocklength [106, 149, 165] and one-shot [88,

117, 159, 172, 177, 189] information theory have been widely studied.

In this thesis, we studied one-shot information theory, code constructions,

and applications to differential privacy. In the one-shot setting, we assumed the

channel or source was used only once (i.e., it need not be memoryless or ergodic),

and the blocklength was 1. Therefore, the blocklength did not approach infinity,

and hence existing tools (e.g., typical sets [59]) and the law of large numbers could

not be used. We provided several novel constructions for one-shot settings and

proved achievability results, based on the Poisson functional representation [118].

These results were expected to recover existing (first-order and second-order)

asymptotic bounds when applied to memoryless channels or sources.

In Chapter 3, we provide a unified one-shot coding framework over a gen-

eral noisy network, applicable to any combination of source coding, channel

coding, and coding for computing problems. Compared to the original Pois-
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son matching lemma [117], our scheme works for arbitrary discrete acyclic noisy

networks and can be viewed as a one-shot counterpart of the asymptotic acyclic

discrete memoryless network studied by Lee and Chung [110]. Various one-shot

results [117] and asymptotic results [59] have been recovered, and novel one-shot

results have been derived, including source coding, channel coding, primitive relay

channel [55, 56, 59, 101, 142], Gelfand-Pinsker [74, 89], relay-with-unlimited-look-

ahead [57, 58], Wyner-Ziv [180, 182], coding for computing [184], multiple access

channels [4, 5, 125], broadcast channels [138], and cascade multiterminal source

coding [42].

In Chapter 4, we derived novel one-shot achievability results for two classical

secrecy problems in information theory: the information hiding problem [144]

and the compound wiretap channels [123]. Our bounds are based on the Pois-

son matching lemma together with other techniques, and are applicable to both

continuous and discrete cases. Our one-shot achievability results apply to any

distribution of the source data, and any class of the channels (not necessarily

memoryless or ergodic), and can readily recover the existing asymptotic results

on both problems when apply to discrete memoryless channels subject to poten-

tial distortion constraints, thus providing alternative proofs that are potentially

simpler. Moreover, we generalized the information hiding setting [144] and ex-

tended its reconstruction objective. For both the generalized information hiding

problem and the compound wiretap channels, unlike most existing studies, we do

not assume that the decoder knows the channel state in the one-shot setting.

In Chapter 5, we proposed a novel scheme for compressing differential privacy

mechanisms, called Poisson Private Representation (PPR), to reduce the com-

munication cost of differential privacy mechanisms. Unlike previous schemes,

which were either constrained to special classes of DP mechanisms or introduced

additional distortions to the output, our scheme could compress and exactly sim-
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ulate arbitrary mechanisms while locally protecting differential privacy, thereby

preserving the joint distribution of the data and the output of the original local

randomizer. PPR achieved a compression size within a logarithmic gap from the

theoretical lower bound, and a new order-wise trade-off between communication,

accuracy, and central and local differential privacy for distributed mean estima-

tion was derived. One possible issue was the running time of PPR, which we dis-

cussed and tackled by using sliced PPR, a method that divided long data vectors

into small chunks. Moreover, we presented experimental results on distributed

mean estimation to show that, while providing local differential privacy, PPR

and sliced PPR consistently offered a better trade-off between communication,

accuracy, and central differential privacy compared to the coordinate-subsampled

Gaussian mechanism [34].

6.1 Future Directions

While we have discussed the analysis and applications of one-shot codes based

on the Poisson functional representation [118], several avenues for future research

remain, which we discuss below.

Based on the unified one-shot coding scheme over arbitrary noisy networks

described in Chapter 3, automated theorem provers can potentially be designed.

For example, an existing automated theorem proving tool [112] provides an algo-

rithm for deriving asymptotic inner and outer bounds for general acyclic discrete

memoryless networks [110]. Considering our coding scheme in Chapter 3 as a

one-shot counterpart of [110], designing an automated theorem prover for one-

shot inner bounds appears promising. Developing different schemes for one-shot

outer bounds could be another potential direction for future work. Moreover, we

should note that for the sake of universality and simplicity, our one-shot cod-
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ing scheme sacrifices some performance. For example, for broadcast channels,

we showed in Section 3.7 that two corner points can be recovered, but not the

entire region of Marton’s inner bound, which could be derived using the original

Poisson matching lemma with a more complicated analysis [117]. A possible ex-

tension is to generalize our scheme to improve its capability without significantly

compromising its universality and simplicity.

In Chapter 5, we discussed the application of channel simulation schemes

(in particular, a variant of the Poisson functional representation [118]) for com-

pressing differential privacy mechanisms. As detailed in Section 5.9, the running

time of general channel simulation schemes poses challenges for practical imple-

mentation, although certain strategies, such as the sliced PPR method shown

in Section 5.9, can improve efficiency. Although it has been proven in [3] that

no general polynomial-time exact sampling-based method exists (even without

privacy constraints) unless RP = NP , fast exact channel simulation schemes

can still be designed for specific noisy channels. For the channel simulation task

itself (without privacy constraints), recent works have proposed using linear error

correction codes, such as polar codes [7], for fast channel simulation; techniques

from [68, 70] are also useful when PZ|X is unimodal. On the one hand, developing

fast channel simulation schemes for specific channels is an interesting research di-

rection on its own (for example, the additive Gaussian noise channel, which plays

an important role in neural compression [86] and differential privacy [85, 185];

special schemes based on vector quantization have been considered in [104]). On

the other hand, applying these schemes to compress differential privacy mecha-

nisms is another promising future direction. Moreover, as discussed in Chapter 5,

our scheme suffers a two-fold increase in the privacy budget, similar to the re-

sults based on importance sampling [153] (which is an approximate but not exact

scheme). It is worth investigating whether this two-fold increase is a fundamental
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limit for privacy mechanism simulation.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Theorem 3.4.1 and Theorem 3.4.2

We first generate N independent exponential processes Ui for i ∈ [N ] according

to Section 3.2, which serve as the random codebooks. Each node i will perform

two steps: the decoding step and the encoding step.

We describe the decoding step at node i. The node observes Yi and wants to

decode U ′
i = (Uai,j)j∈[d′i], while utilizing (Uai,j)j∈[d′i+1..di] by non-unique decoding.

For the sake of notational simplicity, we omit the subscript i and write d = di,

d′ = d′i, ak = ai,k, US = U i,S = (Uai,j)j∈S , Uk := Uai,k . For each j = 1, . . . , d′,

the node will perform soft decoding via the exponential process refinement (see

Section 3.2) on Ud, and then on Ud−1, and so on up to U j+1, and then use all

the distributions obtained to decode U j uniquely using the Poisson functional

representation. For example, when d = 3, d′ = 2, the decoding process will

be: U3 (soft), U2 (soft), U1 (unique), U3 (soft), U2 (unique). The choice of the

sequence ai,k controls the decoding ordering of the random variables. The goal

is to obtain the decoded variables Û1, . . . , Ûd′ that equal U1, . . . , Ud′ with high

probability.
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More precisely, for j = 1, . . . , d′, the node computes the decoded variable

Û j ∈ U j by first computing the joint distributions Q(j)

U [k..d]
over Uk × . . .× Ud for

k = d, d− 1, . . . , j + 1 recursively using the exponential process refinement as

Q
(j)

U [k..d]
:=
(
Q

(j)

U [k+1..d]
PUk|U [k+1..d],U [j−1],Yi

(· | ·, Û [j−1], Yi)
)Uk ,

i.e., first compute the semidirect product between Q
(j)

U [k+1..d]
and the conditional

distribution PUk|U [k+1..d],U [j−1],Yi
(· | ·, Û [j−1], Yi) (computed using the ideal joint dis-

tribution of XN , Y N , UN) to obtain a distribution over Uk × . . . × Ud, and then

refine it by Uk using Definition 3.2.2. For the base case, we assume Q(j)

U [d+1..d]
is

the degenerate distribution. After we have computed Q(j)

U [j+1..d]
, we can obtain Û j

using the Poisson functional representation (3.1) as Û j = (Uj)Q̃(j)

Uj

, where Q̃(j)

Uj
is

the U j-marginal of

Q
(j)

U [j+1..d]
PUj |U [j+1..d],U [j−1],Yi

(· | ·, Û [j−1], Yi). (A.1)

The node repeats this process for j = 1, . . . , d′ to obtain Û
′
i = (Û1, . . . , Ûd′).

We then describe the encoding step at node i. It uses the Poisson functional

representation (see Section 3.2) to obtain

Ui = (Ui)
P
Ui|Yi,U

′
i
(·|Yi,Û

′
i)
. (A.2)

Finally, it generates Xi from the conditional distribution PXi|Yi,Ui,U
′
i
(·|Yi, Ui, Û

′
i).

For the error analysis, we create a fictitious “ideal network” (with N “ideal

nodes”) that is almost identical to the actual network. The only difference is that

the ideal node i uses the true U ′
i (supplied by a genie) instead of the decoded Û

′
i for

the encoding step. The random variables induced by the ideal network will have

the same distribution as the ideal distribution of XN , Y N , UN in Theorem 3.4.1.

Hence, we assume XN , Y N , UN are induced by the ideal network. We couple

the channels in the ideal network and the channels in the actual network, such
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that Yi = Ỹi if (X i−1, Y i−1) = (X̃ i−1, Ỹ i−1) (i.e., the “channel noises” in the

two networks are the same). If none of the actual nodes makes an error (i.e.,

Û
′
i = U

′
i for all i), the actual network would coincide with the ideal network,

and (X̃N , Ỹ N) = (XN , Y N). We consider the error probability conditional on

A := (XN , Y N , UN):

F := P
(
∃ i : Û

′
i = U

′
i

∣∣A).
Note that F is a random variable and is a function of A = (XN , Y N , UN). We

have

F = P
(
∃ i ∈ [N ], j ∈ [d′i] : Û i,j 6= U i,j

∣∣A)
=

N∑
i=1

d′i∑
j=1

P
(
Û

′
[i−1] = U

′
[i−1], Û i,[j−1] = U i,[j−1], Û i,j 6= U i,j

∣∣A).
For the term inside the summation (which is the probability that the first er-

ror we make is at U i,j), by (A.1), (A.2) and the Poisson matching lemma [117]

(we again omit the subscripts i as in the description of the decoding step, e.g.,

we write U j = U i,j = Uaj = Uai,j ; we also simply write P (U j|Yaj , U
′
aj
) =

PUj |Yaj ,U
′
aj

(U j|Yaj , U
′
aj
)), we have

P
(
Û

′
[i−1] = U

′
[i−1], Û i,[j−1] = U i,[j−1], Û i,j 6= U i,j

∣∣A)
≤ E

[
P (U j|Yaj , U

′
aj
)

Q(j)(U [j+1..d])P (U j |U [j+1..d], U [j−1], Yi)

∣∣∣∣A]
(a)

≤ E
[

P (U j|Yaj , U
′
aj
)

P (U j |U [j+1..d], U [j−1], Yi)

· E
[

1

Q(j)(U [j+1..d])

∣∣∣∣U [d], Yi, Yaj , U
′
aj
,U[j+1..d]

] ∣∣∣∣A]
(b)

≤ E
[

P (U j|Yaj , U
′
aj
)

P (U j |U [j+1..d], U [j−1], Yi)
(ln |U j+1|+ 1)

· 1

Q(j)(U [j+2..d])

(
P (U j+1|Yaj+1

, U
′
aj+1

)

P (U j+1|U [j+2..d], U [j−1], Yi)
+ 1

) ∣∣∣∣A]
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(c)

≤ E
[

P (U j|Yaj , U
′
aj
)

P (U j |U [j+1..d], U [j−1], Yi)

·
d′∏

k=j+1

(ln |Uk|+ 1)

(
P (Uk|Yak , U

′
ak
)

P (Uk|U [k+1..d], U [j−1], Yi)
+ 1

) ∣∣∣∣A]
= Bi,j,

where (a) is by Jensen’s inequality, (b) is due to Lemma 3.2.3, (c) is by apply-

ing the same steps as (a) and (b) d′ − j − 1 times, and βi,j is given in (3.4).

The proof of Theorem 3.4.1 is completed by noting that δTV(PXN ,Y N , PX̃N ,Ỹ N ) ≤

P((XN , Y N) 6= (X̃N , Ỹ N)) ≤ E[F ] = E[min{F, 1}].

We now prove Theorem 3.4.2. Recall that the scheme we have constructed

requires the public randomness W , which we have to fix in order to construct a

deterministic coding scheme for Theorem 3.4.2. We have

E
[
P
(
(X̃N , Ỹ N) ∈ E

∣∣W)]
= P((X̃N , Ỹ N) ∈ E)

≤ P
(
(XN , Y N) ∈ E or (XN , Y N) 6= (X̃N , Ỹ N)

)
= E

[
P
(
(XN , Y N) ∈ E or (XN , Y N) 6= (X̃N , Ỹ N)

∣∣A)]
≤ E

[
min

{
1{(XN , Y N) ∈ E}+ P

(
(XN , Y N) 6= (X̃N , Ỹ N)

∣∣A), 1}]
≤ E

[
min

{
1{(XN , Y N) ∈ E}+ F, 1

}]
.

Therefore, there exists a value w such that P((X̃N , Ỹ N) ∈ E |W = w) satisfies the

upper bound. Fixing the value of W to w gives a deterministic coding scheme.
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Appendix B

Proofs for Chapter 4

B.1 Proof of Proposition 4.4.1

Proof. Write d(A, Ã) := supx∈X ‖AY |X(·|x)− ÃY |X(·|x)‖TV. We use the standard

method to bound the covering number, where we start with Ã = ∅, and add

A ∈ A not currently covered by Ã (i.e., minÃ∈Ã d(A, Ã) > ϵ) to Ã one by one

until all of A is covered. Note that every two different Ã, Ã′ ∈ Ã produced this

way must satisfy d(Ã, Ã′) > ϵ, and hence the (ϵ/2)-balls {A : d(A, Ã) ≤ ϵ/2}

must be disjoint for Ã ∈ Ã.

We now treat AY |X as a transition probability matrix A ∈ R|Y|×|X |. We have

d(A, Ã) =
1

2
‖A− Ã‖1

=
1

2
max

x

∑
y

|Ay,x − Ãy,x|.

The volume of the ball {A ∈ R|Y|×|X | : d(A, Ã) ≤ ϵ/2} (i.e., its Lebesgue measure

in the space R|Y|·|X |) is ((2ϵ)|Y|/(|Y|!))|X |, and all these balls are subsets of {A ∈

R|Y|×|X | : minx,y Ay,x ≥ −ϵ, maxx
∑

y Ay,x ≤ 1 + ϵ}, which has a volume ((1 +
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(|Y|+ 1)ϵ)|Y|/(|Y|!))|X |. Hence, the size of Ã is upper-bounded by((
1 + (|Y|+ 1)ϵ

)|Y|
/(|Y|!)

)|X |

(
(2ϵ)|Y|/(|Y|!)

)|X | =
( 1

2ϵ
+
|Y|+ 1

2

)|X |·|Y|
.
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Appendix C

Proofs for Chapter 5

C.1 Proof of Proposition 5.4.1

Write (Xi)i ∼ PP(µ) if the points (Xi)i (as a multiset, ignoring the ordering) form

a Poisson point process with intensity measure µ. Similarly, for f : [0,∞)n →

[0,∞), we write PP(f) for the Poisson point process with intensity function f (i.e.,

the intensity measure has a Radon-Nikodym derivative f against the Lebesgue

measure).

Let (Ti)i ∼ PP(1) be a Poisson process with rate 1, independent of Z1, Z2, . . .
iid∼

Q. By the marking theorem [109], (Zi, Ti)i ∼ PP(Q × λ[0,∞)), where Q × λ[0,∞)

is the product measure between Q and the Lebesgues measure over [0,∞). Let

P = PZ|X(·|x), and T̃i = Ti · (dP
dQ(Zi))

−1. By the mapping theorem [109] (also

see [117, 118]), (Zi, T̃i)i ∼ PP(P × λ[0,∞)). Note that the points (Zi, T̃i)i may

not be sorted in ascending order of T̃i. Therefore, we will sort them as follows.

Let j1 be the j such that T̃j is the smallest, j2 be the j other than j1 such that

T̃j is the smallest, and so on. Break ties arbitrarily. Then (T̃ji)i is an ascending

sequence, and we still have (Zji , T̃ji)i ∼ PP(P × λ[0,∞)) since we are merely re-

arranging the points. Comparing (Zji , T̃ji)i ∼ PP(P × λ[0,∞)) with the definition
113



of (Zi, Ti)i ∼ PP(Q × λ[0,∞)), we can see that (T̃ji)i ∼ PP(1) is independent of

Zj1 , Zj2 , . . .
iid∼ P .

Recall that in PPR, we generate K ∈ Z+ with

Pr(K = k) =
T̃−α
k∑∞

i=1 T̃
−α
i

,

and the final output is ZK . Rearranging the points according to (ji)i, the dis-

tribution of the final output remains the same if we instead generate K ′ ∈ Z+

with

Pr(K ′ = k) =
T̃−α
jk∑∞

i=1 T̃
−α
ji

,

and the final output is ZjK′ . Since (T̃ji)i ∼ PP(1) is independent of Zji
iid∼ P , we

know that K ′ is independent of (Zji)i, and hence ZjK′ ∼ P follows the desired

distribution.

C.2 Reparametrization and Detailed Algorithm

of PPR

We now discuss the implementation of the Poisson private representation in Sec-

tion 5.4. Practically, the algorithm cannot compute the whole infinite sequence

(T̃i)i. We can truncate the method and only compute T̃i, . . . , T̃N for a large N

and select K ∈ {1, . . . , N}, which incurs a small distortion in the distribution of

Z.1 While this method is practically acceptable, it might defeat the purpose of
1To compare to the minimal random coding (MRC) [39, 86, 159] scheme in [153], which also

utilizes a finite number N of samples (Zi)i=1,...,N , while truncating the number of samples to

N in both PPR and MRC results in a distortion in the distribution of Z that tends to 0 as

N → ∞, the difference is that logK (which is approximately the compression size) in MRC

grows like logN , whereas logK does not grow as N → ∞ in PPR. The size N in truncated

PPR merely controls the tradeoff between accuracy of the distribution of Z and the running

time of the algorithm.
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having an exact algorithm that ensures the correct conditional distribution PZ|X .

We now present an exact algorithm for PPR that terminates in a finite amount

of time using a reparametrization.

In the proof of Theorem C.6.1, we showed that, letting (Ti)i ∼ PP(1), Z1, Z2, . . .
iid∼

Q, Ri := (dP/dQ)(Zi), V1, V2, . . .
iid∼ Exp(1), PPR can be equivalently expressed

as

K = argmin
k

T α
k R

−α
k Vk.

The problem of finding K is that there is no stopping criteria for the argmin. For

example, if we scan the points (Ti, Ri, Vi)i in increasing order of Ti, it is always

possible that there is a future point with Vi so small that it makes T α
i R

−α
i Vi

smaller than the current minimum. If we scan the points in increasing order of

Vi instead, it is likewise possible that there is a future point with a very small

Ti. We can scan the points in increasing order of Ui := T α
i Vi, but we would not

know the indices of the points in the original process where T1 ≤ T2 ≤ · · · is

in increasing order, which is necessary to find out the Zi corresponding to each

point (recall that in PPR, the point with the smallest Ti corresponds to Z1, the

second smallest Ti corresponds to Z2, etc.).

Therefore, we will scan the points in increasing order of Bi := T α
i min{Vi, 1}

instead. By the mapping theorem [109], (T α
i )i ∼ PP(α−1t1/α−1). By the marking

theorem [109],

(T α
i , Vi)i ∼ PP(α−1t1/α−1e−v).

By the mapping theorem,

(T α
i , T

α
i Vi)i ∼ PP(α−1t1/α−2e−vt−1

).

Since Bi = min{T α
i , T

α
i Vi}, again by the mapping theorem,

(Bi)i ∼ PP
(∫ ∞

b

α−1b1/α−2e−vb−1dv +
∫ ∞

b

α−1t1/α−2e−bt−1dt
)
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= PP
(
α−1b1/α−1e−1 + α−1b1/α−1γ(1− α−1, 1)

)
= PP

(
α−1

(
e−1 + γ1

)
b1/α−1

)
,

where γ1 := γ(1 − α−1, 1) and γ(β, x) =
∫ x

0
e−ττβ−1dτ is the lower incomplete

gamma function. Comparing the distribution of (Bi)i and (T α
i )i, we can generate

(Bi)i by first generating (Ui)i ∼ PP(1), and then taking Bi = (Uiα/(e
−1 + γ1))

α.

The conditional distribution of (Ti, Vi) given Bi = b is described as follows:

• With probability e−1/(e−1+γ1), we have T α
i = b and T α

i Vi ∼ b(Exp(1)+1),

and hence Ti = b1/α and Vi ∼ Exp(1) + 1.

• With probability γ1/(e−1 + γ1), we have T α
i Vi = b and

T α
i ∼

α−1t1/α−2e−bt−1

α−1γ(1− α−1, 1)b1/α−1
.

Hence, for 0 < τ ≤ 1,

Pr(Vi ≤ τ) = Pr(T α
i ≥ b/τ) =

γ(1− α−1, τ)

γ(1− α−1, 1)
,

and Vi follows the truncated gamma distribution with shape 1 − α−1 and

scale 1, truncated within the interval [0, 1]. We then have Ti = (b/Vi)
1/α.

The algorithm is given in Algorithm 1. The encoder and decoder require a shared

random seed s. One way to generate s is to have the encoder and decoder maintain

two synchronized pseudorandom number generators (PRNGs) that are always at

the same state, and invoke the PRNGs to generate s, guaranteeing that the s at

the encoder is the same as the s at the decoder. The encoder maintains a collec-

tion of points (Ti, Vi,Θi), stored in a heap to allow fast query and removal of the

point with the smallest Ti. The value Θi ∈ {0, 1} indicates whether it is possible

that the point (Ti, Vi) attains the minimum of T α
k R

−α
k Vk. The encoding algorithm

repeats until there is no possible points left in the heap, and it is impossible for
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any future point to be better than the current minimum of T α
k R

−α
k Vk. The encod-

ing time complexity is O(supz(dP/dQ)(z) log(supz(dP/dQ)(z))), which is close

to other sampling-based channel simulation schemes [72, 83].2 The decoding algo-

rithm simply outputs the k-th sample generated using the random seed s, which

can be performed in O(1) time.3

The PPR is implemented by Algorithm 1. We write x ← ExpG (1) to mean

that we generate an exponential random variate x with rate 1 using the pseudo-

random number generator G . Write x← Explocal(1) to mean that x is generated

using a local pseudorandom number generator (not G ).

Algorithm 1: Poisson private representation

Procedure PPREncode(α,Q, r, r∗, s) :

Input: parameter α > 1, distribution Q, density r(z) := (dP/dQ)(z),

bound r∗ ≥ supz r(z), random seed s

Output: index k ∈ Z>0

1: Initialize PRNG G using the seed s

2: u← 0, w∗ ←∞, k ← 0, k∗ ← 0, n← 0

3: γ1 ← γ(1− α−1, 1) =
∫ 1

0
e−ττ−α−1dτ

4: h← ∅ (empty heap)

5: while true do

6: u← u+ Explocal(1) ▷ Generated using local randomness (not G )

7: b← (uα/(e−1 + γ1))
α

2It was shown in [72] that greedy rejection sampling [83] runs in O(supz(dP/dQ)(z)) time.

The PPR algorithm has an additional log term due to the use of heap.
3A counter-based PRNG [150] allows us to directly jump to the state after k uses of the

PRNG, without the need of generating all k samples, greatly improving the decoding efficiency.

This technique is applicable to greedy rejection sampling [83] and the original Poisson functional

representation [117, 118] as well.
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8: if n = 0 and b(r∗)−α ≥ w∗ then ▷ No possible points left and future

points impossible

9: return k∗

10: end if

11: if Uniflocal(0, 1) < e−1/(e−1 + γ1) then ▷ Run with prob. e−1/(e−1 + γ1)

12: t← b1/α, v ← Explocal(1) + 1

13: else

14: repeat

15: v ← Gammalocal(1− α−1, 1) ▷ Gamma distribution

16: until v ≤ 1

17: t← (b/v)1/α

18: end if

19: θ ← 1{(t/r∗)αv ≤ w∗} ▷ Is it possible for this point to be optimal

20: Push (t, v, θ) to h

21: n← n+ θ ▷ Number of possible points in heap

22: while h 6= ∅ and min(t′,v′,θ′)∈h t
′ ≤ b1/α do ▷ Assign Zi’s to points in heap

with small Ti
23: (t, v, θ)← argmin(t′,v′,θ′)∈h t

′, and pop (t, v, θ) from h

24: n← n− θ

25: k ← k + 1

26: Generate z ∼ Q using G

27: w ← (t/r(z))αv

28: if w < w∗ then

29: w∗ ← w

30: k∗ ← k

31: end if

32: end while

118



33: end while

Procedure PPRDecode(Q, k, s) :

Input: Q, index k ∈ Z>0, seed s

Output: sample z

1: Initialize PRNG G using the seed s

2: for i = 1, 2, . . . , k do

3: Generate z ∼ Q using G ▷ See footnote 3

4: end for

5: return z

Algorithm 1: Poisson private representation

C.3 Proofs of Theorem 5.4.5 and Theorem 5.4.7

First prove Theorem 5.4.5. Consider a ε-DP mechanism PZ|X . Consider neighbors

x1, x2, and let Pj := PZ|X(·|xj), T̃j,i := Ti/(
dPj

dQ (Zi)), andKj be the output of PPR

applied on Pj, for j = 1, 2. Since PZ|X is ε-DP,

e−εdP2

dQ (z) ≤ dP1

dQ (z) ≤ eε
dP2

dQ (z) (C.1)
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for Q-almost every z,4 and hence e−εT̃2,i ≤ T̃1,i ≤ eεT̃2,i. For k ∈ Z+, we have,

almost surely,

Pr(K1 = k | (Zi, Ti)i) =
T̃−α
1,k∑∞

i=1 T̃
−α
1,i

≤
eαεT̃−α

2,k∑∞
i=1 e

−αεT̃−α
2,i

= e2αε Pr(K2 = k | (Zi, Ti)i).

For any measurable S ⊆ Z∞ × Z>0,

Pr (((Zi)i, K1) ∈ S)

= E
[
Pr
(
((Zi)i, K1) ∈ S

∣∣ (Zi, Ti)i
)]

= E

 ∑
k: ((Zi)i,k)∈S

Pr
(
K1 = k

∣∣ (Zi, Ti)i
)

≤ e2αε · E

 ∑
k: ((Zi)i,k)∈S

Pr
(
K2 = k

∣∣ (Zi, Ti)i
)

= e2αε Pr (((Zi)i, K2) ∈ S) . (C.2)

Hence, P(Zi)i,K|X is 2αε-DP.

For Theorem 5.4.7, consider a ε·dX -private mechanism PZ|X , and consider x1, x2 ∈

X . We have

e−ε·dX (x1,x2)
dP2

dQ (z) ≤ dP1

dQ (z) ≤ eε·dX (x1,x2)
dP2

dQ (z) (C.3)

4ε-DP only implies that (C.1) holds for P1-almost every z (or equivalently P2-almost every

z since P1, P2 are absolutely continuous with respect to each other). We now show that (C.1)

holds for Q-almost every z. Apply Lebesgue’s decomposition theorem to find measures Q̃, Q̂

such that Q = Q̃ + Q̂, Q̃ � P1 and Q̂ ⊥ P1. There exists Z ′ ⊆ Z such that P1(Z ′) = 1 and

Q̂(Z ′) = 0. Since P1 � Q, we have P1 � Q̃. We have (C.1) for Q̃-almost every z. Also, we

have (C.1) for Q̂-almost every z since z /∈ Z ′ gives dP1

dQ (z) = dP1

dQ̂ (z) = 0 for Q̂-almost every z,

and also dP2

dQ (z) = 0 for Q̂-almost every z since P2 � P1.

120



for Q-almost every z. By exactly the same arguments as in the proof of The-

orem 5.4.5, Pr (((Zi)i, K1) ∈ S) ≤ e2αε·dX (x1,x2) Pr (((Zi)i, K2) ∈ S), and hence

P(Zi)i,K|X is 2αε · dX -private.

C.4 Proof of Theorem 5.4.6

Consider a (ε, δ)-DP mechanism PZ|X . Consider neighbors x1, x2, and let Pj :=

PZ|X(·|xj), and Kj be the output of PPR applied on Pj, for j = 1, 2. By the

definition of (ε, δ)-differential privacy, we have∫
max {ρ1(z)− eερ2(z), 0}Q(dz) ≤ δ, (C.4)∫
max {ρ2(z)− eερ1(z), 0}Q(dz) ≤ δ. (C.5)

Let

ρ(z) := min
{
max

{
ρ1(z), e

−ερ2(z)
}
, eερ2(z)

}
.

Note that e−ερ2(z) ≤ ρ(z) ≤ eερ2(z). We then consider two cases:

Case 1:
∫
ρ(z)Q(dz) ≤ 1. Let ρ3(z) be such that

∫
ρ3(z)Q(dz) = 1 and

ρ(z) ≤ ρ3(z) ≤ eερ2(z).

We can always find such ρ3 by taking an appropriate convex combination of the

lower bound above (which integrates to ≤ 1) and the upper obund above (which

integrates to ≥ 1). We then have

e−ερ2(z) ≤ ρ3(z) ≤ eερ2(z). (C.6)

If ρ1(z)−eερ2(z) ≤ 0, then ρ1(z)−ρ3(z) ≤ ρ1(z)−ρ(z) ≤ 0. If ρ1(z)−eερ2(z) > 0,

then ρ3(z) = ρ(z) = eερ2(z). Either way, we have max {ρ1(z)− ρ3(z), 0} =

max {ρ1(z)− eερ2(z), 0}. By (C.4), we have∫
max {ρ1(z)− ρ3(z), 0}Q(dz) ≤ δ.
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Let P3 = ρ3Q be the probability measure with dP3/dQ = ρ3. Then the total

variation distance dTV(P1, P3) between P1 and P3 is at most δ, and by (C.6),

e−εdP2

dQ (z) ≤ dP3

dQ (z) ≤ eε
dP2

dQ (z). (C.7)

Case 2:
∫
ρ(z)Q(dz) > 1. Let ρ3(z) be such that

∫
ρ3(z)Q(dz) = 1 and

e−ερ2(z) ≤ ρ3(z) ≤ ρ(z).

We can always find such ρ3 by taking an appropriate convex combination of the

lower bound above (which integrates to ≤ 1) and the upper obund above (which

integrates to > 1). We again have e−ερ2(z) ≤ ρ3(z) ≤ eερ2(z). If e−ερ2(z) −

ρ1(z) ≤ 0, then ρ3(z) − ρ1(z) ≤ ρ(z) − ρ1(z) ≤ 0. If e−ερ2(z) − ρ1(z) > 0,

then ρ3(z) = ρ(z) = e−ερ2(z). Either way, we have max {ρ3(z)− ρ1(z), 0} =

max {e−ερ2(z)− ρ1(z), 0}. By (C.5), we have∫
max {ρ3(z)− ρ1(z), 0}Q(dz) ≤ e−εδ ≤ δ.

Let P3 = ρ3Q be the probability measure with dP3/dQ = ρ3. Again, we have

dTV(P1, P3) ≤ δ and (C.7). Therefore, regardless of whether Case 1 or Case 2

holds, we can construct P3 satisfying dTV(P1, P3) ≤ δ and (C.7). Let K3 be the

output of PPR applied on P3.

In the proof of Theorem C.6.1, we see that PPR has the following equivalent

formulation. Let (Ti)i ∼ PP(1) be a Poisson process with rate 1, independent of

Z1, Z2, . . .
iid∼ Q. Let Ri := (dP/dQ)(Zi), and let its probability measure be PR.

Let V1, V2, . . .
iid∼ Exp(1). PPR can be equivalently expressed as

K = argmin
k

T α
k R

−α
k Vk = argmin

k

TkV
1/α
k

Rk

.

Note that (TiV 1/α
i )i ∼ PP(

∫∞
0
v−1/αe−vdv) = PP(Γ(1−α−1)) is a uniform Poisson

process. Therefore PPR is the same as the Poisson functional representation [117,
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118] applied on (TiV
1/α
i )i. By the grand coupling property of Poisson functional

representation [116, 117] (see [116, Theorem 3]), if we apply the Poisson functional

representation on P1 and P3 to get K1 and K3 respectively, then

Pr(K1 6= K3) ≤ 2dTV(P1, P3) ≤ 2δ.

Therefore, for any measurable S ⊆ Z∞ × Z>0,

Pr (((Zi)i, K1) ∈ S) ≤ Pr (((Zi)i, K3) ∈ S) + 2δ

≤ e2αε Pr (((Zi)i, K2) ∈ S) + 2δ,

where the last inequality is by applying (C.2) on P3, P2 instead of P1, P2. Hence,

P(Zi)i,K|X is (2αε, 2δ)-DP.

C.5 Proof of Theorem 5.4.8

We present the proof of (ε, δ)-DP of PPR (i.e., Theorem 5.4.8).

Proof. We assume

α− 1 ≤ βδ̃ε̃2

− ln δ̃
, (C.8)

where β := e−4.2. Using the Laplace functional of the Poisson process (T̃i)i [109,

Theorem 3.9], for w > 0,

E

[
exp

(
−w

∑
i

T̃−α
i

)]
= exp

(
−
∫ ∞

0

(1− exp(−wt−α))dt
)

(C.9)

= exp
(
−w1/αΓ(1− α−1)

)
.

We first bound the left tail of
∑

i T̃
−α
i . By Chernoff bound, for d ≥ 0,

Pr
(∑

i

T̃−α
i ≤ d

)
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≤ inf
w>0

ewdE

[
exp

(
−w

∑
i

T̃−α
i

)]
= inf

w>0
exp

(
wd− w1/αΓ(1− α−1)

)
≤ exp

((
Γ(1− α−1)

αd

) α
α−1

d−
(
Γ(1− α−1)

αd

) 1
α−1

Γ(1− α−1)

)
= exp

((
Γ(1− α−1)

) α
α−1 d−

1
α−1

(
α− α

α−1 − α− 1
α−1

))
= exp

(
−
(

αd

(Γ(1− α−1))α

)− 1
α−1 (

1− α−1
))

= exp
(
−
(
αd(1− α−1)α

(Γ(2− α−1))α

)− 1
α−1 (

1− α−1
))

= exp
(
−
(

(α− 1)d

(Γ(2− α−1))α

)− 1
α−1

)
.

Therefore, to guarantee Pr(
∑

i T̃
−α
i ≤ d) ≤ δ̃/3, we require

d ≤
Γ(2− α−1)α

(
− ln(δ̃/3)

)−(α−1)

α− 1
,

where

Γ(2− α−1)α
(
− ln(δ̃/3)

)−(α−1)

≥ (exp (−γ(α− 1)))α
(
− ln(δ̃2)

)−(α−1)

≥ exp
(
−γα βδ̃ε̃2

− ln δ̃

)(
−2 ln δ̃

)− βδ̃ε̃2

− ln δ̃

≥ exp
(
−2γ βδ̃ε̃

2

− ln δ̃
− 2e−1βδ̃ε̃2

)

≥ exp
(
−
(

2γ

3 ln 2 +
2

3e

)
βε̃2
)

≥ exp
(
−0.81 · βε̃2

)
≥ e−ε̃/2,
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since 1 < α ≤ 2, 0 < δ̃ ≤ 1/3, β = e−4.2 and 0 < ε̃ ≤ 1, where γ is the

Euler-Mascheroni constant. Hence, we have

Pr
(∑

i

T̃−α
i ≤ e−ε̃/2

α− 1

)
≤ δ̃

3
. (C.10)

We then bound the right tail of
∑

i T̃
−α
i . Unfortunately, the Laplace functional

(C.9) does not work since the integral diverges for small t. Therefore, we have to

bound t away from 0. Note that mini T̃i ∼ Exp(1), and hence

Pr(min
i
T̃i ≤ δ̃/3) ≤ δ̃/3. (C.11)

Write τ = δ̃/3. Using the Laplace functional again, for w > 0,

E

exp(w ∑
i: T̃i>τ

T̃−α
i

)
= exp

(
−
∫ ∞

τ

(1− exp(wt−α))dt
)

= exp
(∫ ∞

τ

(exp(wt−α)− 1)dt
)

≤ exp
(∫ ∞

τ

(exp(wτ−α)− 1)
t−α

τ−α
dt
)

= exp
(
exp(wτ−α)− 1

τ−α
· τ

−(α−1)

α− 1

)
= exp

(
τ(exp(wτ−α)− 1)

α− 1

)
.

Therefore, by Chernoff bound, for d ≥ 0,

Pr
( ∑

i: T̃i>τ

T̃−α
i ≥ d

)
≤ inf

w>0
exp

(
−wd+ τ(exp(wτ−α)− 1)

α− 1

)
≤ exp

(
−dτα ln(d(α− 1)τα−1) +

τ(exp(ln(d(α− 1)τα−1))− 1)

α− 1

)
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= exp
(
−dτα ln(d(α− 1)τα−1) + τ

d(α− 1)τα−1 − 1

α− 1

)
= exp

(
− cτ

α− 1
ln c+ τ

c− 1

α− 1

)
= exp

(
− τ

α− 1
(c ln c− c+ 1)

)
≤ exp

(
−τ(2 ln 2− 1)(c− 1)2

α− 1

)
, (C.12)

where

c := d(α− 1)τα−1,

and the last inequality holds whenever c ∈ [1, 2] since in this range,

c ln c− c+ 1 ≥ (2 ln 2− 1)(c− 1)2.

Substituting

d =
eε̃/2

α− 1
,

we have c = eε̃/2τα−1. By (C.12), to guarantee Pr(
∑

i: T̃i>τ T̃
−α
i ≥ d) ≤ δ̃/3 = τ ,

we require
τ(2 ln 2− 1)(eε̃/2τα−1 − 1)2

α− 1
≥ − ln τ,

eε̃/2τα−1 ≥

√
(α− 1)(− ln τ)
τ(2 ln 2− 1)

+ 1. (C.13)

Substituting (C.8), we have

eε̃/2τα−1 ≥ eε̃/2τ
βδ̃ε̃2

− ln δ̃

= exp
(
ε̃

2
+

(
ln δ̃

3

)
βδ̃ε̃2

− ln δ̃

)

≥ exp
(
ε̃

2
+
(
2 ln δ̃

) βε̃

−3 ln δ̃

)
= exp

(
ε̃

(
1

2
− 2β

3

))
,
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since 0 < δ̃ ≤ 1/3. Note that this also guarantees c = eε̃/2τα−1 ∈ [1, 2] since

β = e−4.2 and 0 < ε̃ ≤ 1. We also have

(α− 1)(− ln τ)
τ(2 ln 2− 1)

≤
βδ̃ε̃2

− ln δ̃
(− ln τ)

τ(2 ln 2− 1)

≤
βδ̃ε̃2

− ln δ̃
(−2 ln δ̃)

(δ̃/3)(2 ln 2− 1)

=
6βε̃2

2 ln 2− 1

≤ 16βε̃2.

Hence, √
(α− 1)(− ln τ)
τ(2 ln 2− 1)

+ 1 ≤ 4ε̃
√
β + 1

≤ exp
(
4ε̃
√
β
)

(a)

≤ exp
(
ε̃

(
1

2
− 2β

3

))
≤ eε̃/2τα−1,

where (a) is by β = e−4.2. Hence (C.13) is satisfied, and

Pr
( ∑

i: T̃i>τ

T̃−α
i ≥ eε̃/2

α− 1

)
≤ δ̃

3
.

Combining this with (C.10) and (C.11),

Pr
(∑

i

T̃−α
i /∈

[ e−ε̃/2

α− 1
,
eε̃/2

α− 1

])
≤ Pr

(∑
i

T̃−α
i ≤ e−ε̃/2

α− 1

)
+ Pr(min

i
T̃i ≤ δ̃/3)

+ Pr
( ∑

i: T̃i>δ̃/3

T̃−α
i ≥ eε̃/2

α− 1

)
≤ δ̃.
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Consider an (ε, δ)-differentially private mechanism PZ|X . Consider neighbors

x1, x2, and let Pj := PZ|X(·|xj), T̃j,i := Ti/(
dPj

dQ (Zi)), and Kj be the output of

PPR applied on Pj, for j = 1, 2. We first consider the case δ = 0, which gives
dP1

dQ (z) ≤ eε dP2

dQ (z) for every z. For any measurable S ⊆ Z∞ × Z>0,

Pr (((Zi)i, K1) ∈ S)

= E
[
Pr
(
((Zi)i, K1) ∈ S

∣∣ (Zi, Ti)i
)]

= E

 ∑
k: ((Zi)i,k)∈S

Pr
(
K1 = k

∣∣ (Zi, Ti)i
)

= E

 ∑
k: ((Zi)i,k)∈S

T̃−α
1,k∑
i T̃

−α
1,i


≤ E

1
{∑

i

T̃−α
1,i ∈

[ e−ε̃/2

α− 1
,
eε̃/2

α− 1

]}
min

 ∑
k: ((Zi)i,k)∈S

T̃−α
1,k∑
i T̃

−α
1,i

, 1


+ δ̃

≤ E

min

 ∑
k: ((Zi)i,k)∈S

T̃−α
1,k

e−ε̃/2/(α− 1)
, 1


+ δ̃

= E

min

 ∑
k: ((Zi)i,k)∈S

(dP1

dQ (Zk))
αT−α

k

e−ε̃/2/(α− 1)
, 1


+ δ̃

≤ E

min

 ∑
k: ((Zi)i,k)∈S

(eε dP2

dQ (Zk))
αT−α

k

e−ε̃/2/(α− 1)
, 1


+ δ̃

≤ E

1
{∑

i

T̃−α
2,i ∈

[ e−ε̃/2

α− 1
,
eε̃/2

α− 1

]}
min

 ∑
k: ((Zi)i,k)∈S

(eε dP2

dQ (Zk))
αT−α

k

e−ε̃/2/(α− 1)
, 1


+ 2δ̃

≤ E

min

eαε ∑
k: ((Zi)i,k)∈S

(dP2

dQ (Zk))
αT−α

k

e−ε̃
∑

i T̃
−α
2,i

, 1


+ 2δ̃

≤ E

eαε+ε̃
∑

k: ((Zi)i,k)∈S

T̃−α
2,k∑
i T̃

−α
2,i

+ 2δ̃

= eαε+ε̃ Pr (((Zi)i, K2) ∈ S) + 2δ̃. (C.14)
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Hence PPR is (αε+ ε̃, 2δ̃)-differentially private.

For the case δ > 0, by the definition of (ε, δ)-differential privacy, we have∫
max

{
dP1

dQ (z)− eεdP2

dQ (z), 0

}
Q(dz) ≤ δ.

Let P3 be a probability measure that satisfies

min
{
dP1

dQ (z), eε
dP2

dQ (z)

}
≤ dP3

dQ (z) ≤ eε
dP2

dQ (z),

for every z. Such P3 can be constructed by taking an appropriate convex combi-

nation of the lower bound above (which integrates to ≤ 1) and the upper bound

above (which integrates to ≥ 1) such that P3 integrates to 1. We have∫
max

{
dP1

dQ (z)− dP3

dQ (z), 0

}
Q(dz) ≤ δ,

and hence the total variation distance dTV(P1, P3) between P1 and P3 is at most

δ. Let K3 be the output of PPR applied on P3.

In the proof of Theorem C.6.1, we see that PPR has the following equivalent

formulation. Let (Ti)i ∼ PP(1) be a Poisson process with rate 1, independent of

Z1, Z2, . . .
iid∼ Q. Let Ri := (dP/dQ)(Zi), and let its probability measure be PR.

Let V1, V2, . . .
iid∼ Exp(1). PPR can be equivalently expressed as

K = argmin
k

T α
k R

−α
k Vk = argmin

k

TkV
1/α
k

Rk

.

Note that (TiV 1/α
i )i ∼ PP(

∫∞
0
v−1/αe−vdv) = PP(Γ(1−α−1)) is a uniform Poisson

process. Therefore PPR is the same as the Poisson functional representation [117,

118] applied on (TiV
1/α
i )i. By the grand coupling property of Poisson functional

representation [116, 117] (see [116, Theorem 3]), if we apply the Poisson functional

representation on P1 and P3 to get K1 and K3 respectively, then

Pr(K1 6= K3) ≤ 2dTV(P1, P3) ≤ 2δ.
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Therefore, for any measurable S ⊆ Z∞ × Z>0,

Pr (((Zi)i, K1) ∈ S)

≤ Pr (((Zi)i, K3) ∈ S) + 2δ

≤ eαε+ε̃ Pr (((Zi)i, K2) ∈ S) + 2δ̃ + 2δ,

where the last inequality is by applying (C.14) on P3, P2 instead of P1, P2. This

completes the proof.

C.6 Proof of Theorem 5.4.2

We now bound the size of the index output by the Poisson private representation.

The following is a refined version of Theorem 5.4.2.

Theorem C.6.1. For PPR with parameter α > 1, when the encoder is given the

input x, the message K given by PPR satisfies

E[logK] ≤ D(P‖Q)

+ inf
η∈(0,1]∩(0,α−1)

1

η
log
(
Γ(1− η+1

α
)Γ(η + 1)

(Γ(1− 1
α
))η+1

+ 1

)
(C.15)

≤ D(P‖Q) + log(3.56)
min{(α− 1)/2, 1}

, (C.16)

where P := PZ|X(·|x).

Note that for α = ∞, (C.15) with η = 1 gives E[logK] ≤ D(P‖Q) + log 2,

recovering the bound in [114] (which strengthened [118]).

Proof. Write (Xi)i ∼ PP(µ) if the points (Xi)i (as a multiset, ignoring the or-

dering) form a Poisson point process with intensity measure µ. Similarly, for

f : [0,∞)n → [0,∞), we write PP(f) for the Poisson point process with intensity
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function f (i.e., the intensity measure has a Radon-Nikodym derivative f against

the Lebesgue measure). Let (Ti)i ∼ PP(1) be a Poisson process with rate 1,

independent of Z1, Z2, . . .
iid∼ Q. Let Ri := (dP/dQ)(Zi), and let its probability

measure be PR. We have T̃i = Ti/Ri. Let V1, V2, . . .
iid∼ Exp(1). By the prop-

erty of exponential random variables, for any p1, p2, . . . ≥ 0 with
∑

i pi < ∞, we

have Pr(argminkVk/pk = k) = pk/
∑

i pi. Therefore, PPRF can be equivalently

expressed as

K = argmin
k

T α
k R

−α
k Vk.

By the marking theorem [109], (Ti, Ri, Vi)i is a Poisson process over [0,∞)3 with

intensity measure

(Ti, Ri, Vi)i ∼ PP
(
e−vPR(r)

)
.

By the mapping theorem [109], letting Wi := T α
i R

−α
i Vi, we have

(Ti, Ri,Wi)i ∼ PP
(
rαt−αe−wrαt−α

PR(r)
)
. (C.17)

Again by the mapping theorem,

(Wi)i ∼ PP
(
ER∼PR

[∫ ∞

0

Rαt−αe−wRαt−αdt
])

= PP
(
E
[
α−1(wRα)1/α−1Γ(1− α−1)Rα

])
= PP

(
E
[
α−1w1/α−1Γ(1− α−1)R

])
= PP

(
α−1w1/α−1Γ(1− α−1)

)
since E[R] =

∫
(dP/dQ)(z)Q(dz) = 1. Recall that WK = miniWi by the defini-

tion of K. We have

Pr(WK > w) = exp
(
−
∫ w

0

α−1v1/α−1Γ(1− α−1)dv
)

= exp
(
−w1/αΓ(1− α−1)

)
.
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Hence the probability density function of WK is

− d
dw exp

(
−w1/αΓ(1− α−1)

)
= α−1w1/α−1Γ(1− α−1) exp

(
−w1/αΓ(1− α−1)

)
. (C.18)

By (C.17), the Radon-Nikodym derivative between the conditional distribution

of RK given WK = w and PR is

Pr(RK ∈ [r, r + dr) |WK = w)/PR(dr)

=

∫∞
0
rαt−αe−wrαt−αdt

ER∼PR

[∫∞
0
Rαt−αe−wRαt−αdt

]
=
α−1w1/α−1Γ(1− α−1)r

α−1w1/α−1Γ(1− α−1)

= r

does not depend on w. Hence RK is independent of WK . By (C.17), for 0 ≤ η <

α− 1,

E[T η
K |RK = r, WK = w]

=

∫∞
0
tηrαt−αe−wrαt−αdt∫∞

0
rαt−αe−wrαt−αdt

=
α−1w(η+1)/α−1Γ(1− (η + 1)α−1)rη+1

α−1w1/α−1Γ(1− α−1)r
. (C.19)

Since RK is independent ofWK , using (C.19) and (C.18), for η ∈ (0, 1]∩(0, α−1),

E[T η
K |RK = r]

=

∫ ∞

0

α−1w(η+1)/α−1Γ(1− (η + 1)α−1)rη exp
(
−w1/αΓ(1− α−1)

)
dw

= rηΓ(1− (η + 1)α−1)

∫ ∞

0

α−1w(η+1)/α−1 exp
(
−w1/αΓ(1− α−1)

)
dw

= rηΓ(1− (η + 1)α−1)(Γ(1− α−1))−(η+1)Γ(η + 1)
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=: cα,ηr
η, (C.20)

where cα,η := Γ(1− (η + 1)α−1)(Γ(1− α−1))−(η+1)Γ(η + 1). Hence,

E[log(TK + 1) |RK = r]

≤ E[log((T η
K + 1)1/η) |RK = r]

= E[η−1 log(T η
K + 1) |RK = r]

≤ η−1 log(cα,ηrη + 1). (C.21)

Note that

K − 1 = |{i : Ti < TK}| ,

and hence the expecation ofK−1 given TK should be around TK . This is not exact

since conditioning on TK changes the distribution of the process (Ti, Ri, Vi)i. To

resolve this problem, we define a new process (T ′
i , R

′
i, V

′
i )i which includes all points

in (Ti, Ri, Vi)i excluding the point (TK , RK , VK), together with newly generated

points according to

PP
(
e−vPR(r)1{tαr−αv < T α

KR
−α
K VK}

)
.

Basically, {tαr−αv < T α
KR

−α
K VK} is the “impossible region” where the points in

(Ti, Ri, Vi)i cannot be located in, since K attains the minimum of T α
KR

−α
K VK . The

new process (T ′
i , R

′
i, V

′
i )i removes the point (TK , RK , VK), and then fills in the im-

possible region. It is straightforward to check that (T ′
i , R

′
i, V

′
i )i ∼ PP(e−vPR(r)),

independent of (TK , RK , VK). We have

E[K |TK ]

= E
[
|{i : Ti < TK}|

∣∣∣TK]+ 1

≤ E
[
|{i : T ′

i < TK}|
∣∣∣TK]+ 1

= TK + 1.
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Therefore, by (C.21) and Jensen’s inequality,

E[logK]

= E [E[logK |TK ]]

≤ E [log(TK + 1)]

= E
[
E
[
log(TK + 1)

∣∣RK

]]
≤ E

[
η−1 log(cα,ηRη

K + 1)
]

= η−1EZ∼P

[
log
(
cα,η

(
dP
dQ(Z)

)η

+ 1

)]
= η−1E

[
log
((

dP
dQ(Z)

)η)]
+ η−1E

[
log
(
cα,η +

(dP
dQ(Z)

)−η
)]

≤ D(P‖Q) + η−1 log
(
cα,η +

(
E
[(dP

dQ(Z)
)−1
])η)

≤ D(P‖Q) + η−1 log(cα,η + 1),

where the last line is due to E[((dP/dQ)(Z))−1] =
∫
((dP/dQ)(Z))−1P (dz) ≤ 1

(this step appeared in [114]). The bound (C.15) follows from minimizing over

η ∈ (0, 1] ∩ (0, α− 1).

To show (C.16), substituting η = min{(α− 1)/2, 1},

cα,η =
Γ(1− (η + 1)α−1)Γ(η + 1)

(Γ(1− α−1))η+1

(a)

≤ (1− α−1)η+1

0.885η+1 · (1− (η + 1)α−1)

≤ (1− α−1)η+1

0.8852 · (1− ((α− 1)/2 + 1)α−1)

=
2

0.8852
(1− α−1)η

≤ 2.56,

where (a) is because 0.885 ≤ xΓ(x) = Γ(x+ 1) ≤ 1 for 0 < x ≤ 1. Hence,

E[logK] ≤ D(P‖Q) + η−1 log(cα,η + 1),
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≤ D(P‖Q) + log(3.56)
min{(α− 1)/2, 1}

.

C.7 Distributed Mean Estimation with Rényi

DP

In many machine learning applications, privacy budgets are often accounted in the

moment space, and one popular moment accountant is the Rényi DP accountant.

For completeness, we provide a Rényi DP version of Corollary 5.5.2 in this section.

We begin with the following definition of Rényi DP:

Definition C.7.1 (Rényi Differential privacy [1, 141]). Given a mechanism A

which induces the conditional distribution PZ|X of Z = A(X), we say that it

satisfies (γ, ε)- Rényi DP if for any neighboring (x, x′) ∈ N and S ⊆ Z , it holds

that

Dγ

(
PZ|X=x

∥∥PZ|X=x′
)
≤ ε,

where

Dγ (P‖Q) :=
1

γ − 1
log
(
EQ

[(
P

Q

)γ])
is the Rényi divergence between P and Q. If N = X 2, we say that the mechanism

satisfies (γ, ε)-local DP.

The following conversion lemma from [26] relates Rényi DP to (εDP(δ), δ)-DP.

Lemma C.7.2. If A satisfies (γ, ε)-Rényi DP for some γ ≥ 1, then, for any

δ > 0, A satisfies (εDP(δ), δ)-DP, where

εDP(δ) = ε+
log (1/γδ)
γ − 1

+ log(1− 1/γ). (C.22)
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The following theorem states that, when simulating the Gaussian mechanism,

PPR satisfies the following both central and local DP guarantee:

Corollary C.7.3 (PPR-compressed Gaussian mechanism). Let ε ≥ 0 and γ ≥

1. Consider the Gaussian mechanism PZ|X(·|x) = N (x, σ
2

n
Id), and the proposal

distribution Q = N (0, (C
2

d
+ σ2

n
)Id), where σ ≥

√
Cγ
2ε

. For each client i, let Zi be

the output of PPR applied on PZ|X(·|Xi). We have:

• µ̂(Zn) := 1
n

∑
i Zi yields an unbiased estimator of µ(Xn) = 1

n

∑n
i=1Xi satis-

fying (γ, ε)-(central) Rényi DP and (εDP(δ), δ)-DP, where εDP(δ) is defined

in (C.22).

• PZ|Xi
satisfies (2αε̃DP(δ), 2δ)-local DP, where

ε̃DP(δ) :=
√
nε+

log (1/γδ)
γ − 1

+ log(1− 1/γ).

• µ̂(Zn) has MSE E[‖µ− µ̂‖22] = σ2d/n2.

• The average per-client communication cost is at most ℓ + log2(ℓ + 1) + 2

bits where

ℓ :=
d

2
log2

(C2n

dσ2
+ 1
)
+ ηα ≤

d

2
log2

( nε2

2d ln(1.25/δ) + 1
)
+ ηα,

where ηα := (log2(3.56))/min{(α− 1)/2, 1}.

Proof. The central DP guarantee follows from [141] and Lemma C.7.2. The local

DP guarantee follows from Lemma C.7.2 and Theorem 5.4.8. Finally, the commu-

nication bound can be obtained from the same analysis as in Corollary 5.5.2.

C.8 Proof of Corollary 5.5.2

Consider the PPR applied on the Gaussian mechanism PZ|X(·|x) = N (x, σ
2

n
Id),

with the proposal distribution Q = N (0, (C
2

d
+ σ2

n
)Id). PPR ensures that Zi
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follows the distribution N (Xi,
σ2

n
Id). Therefore the MSE is

E
[
‖µ− µ̂‖22

]
= E

∥∥∥∥∥ 1n
n∑

i=1

(Xi − Zi)

∥∥∥∥∥
2

2


=

1

n
· d · σ

2

n

=
σ2d

n2
.

For the compression size, for x ∈ Rd with ‖x‖2 ≤ C, we have

D(PZ|X(·|x)‖Q)

= EZ∼PZ|X(·|x)

[
log

dPZ|X(·|x)
dQ (Z)

]
= EZ∼PZ|X(·|x)

[
log

(2πσ2/n)−d/2 exp(−1
2
‖Z − x‖22/(σ2/n))

(2π(C
2

d
+ σ2

n
))−d/2 exp(−1

2
‖Z‖22/(C

2

d
+ σ2

n
))

]

= EZ∼PZ|X(·|x)

[
d

2
log

C2

d
+ σ2

n

σ2/n
+

1

2

(
‖Z‖22

C2

d
+ σ2

n

− ‖Z − x‖
2
2

σ2/n

)]

≤ d

2
log

C2

d
+ σ2

n

σ2/n
+

1

2

(
C2 + σ2d/n

C2

d
+ σ2

n

− σ2d/n

σ2/n

)

=
d

2
log
(
C2n

dσ2
+ 1

)
.

Hence, by Theorem 5.4.2, the compression size is at most ℓ+ log2(ℓ+1)+ 2 bits,

where

ℓ :=
d

2
log2

(C2n

dσ2
+ 1
)
+ ηα

≤ d

2
log2

( nϵ2

2d ln(1.25/δ) + 1
)
+ ηα

≤ nϵ2 log2(e)
4 ln(1.25/δ) + ηα,

where ηα := (log2(3.56))/min{(α− 1)/2, 1}.

The central-DP guarantee follows from (ε, δ)-DP of Gaussian mechanism [52,

Appendix A] since the output distribution of PPR is exactly the same as the
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Gaussian mechanism, whereas the local-DP guarantee follows from Theorem 5.4.6

and [52, Appendix A].

C.9 Proof of Corollary 5.7.1

Let ‖X −Z‖2 = RS where R ∈ [0,∞) is the magnitude of X −Z, and ‖S‖2 = 1.

As shown in [66], R follows the Gamma distribution with shape d and scale 1/ε.

Hence the MSE is

E
[
‖X − Z‖22

]
= E

[
R2
]
=

(
d

ε

)2

+
d

ε2
=
d(d+ 1)

ε2
.

The conditional differential entropy (in nats) of Z given X is

h(Z|X) = h(R) + h(S|R)

= d+ lnΓ(d)− (d− 1)ψ(d)− ln ε+ E
[
ln(nRd−1Vol(Bd(1)))

]
= d+ lnΓ(d)− (d− 1)ψ(d)− ln ε+ ln d+ ln(Vol(Bd(1))) + (d− 1)E [lnR]

= d+ lnΓ(d)− (d− 1)ψ(d)− ln ε+ ln d+ d

2
ln π − lnΓ

(
d

2
+ 1

)
− (d− 1) ln ϵ+ (d− 1)ψ(d)

= d ln e
√
π

ε
+ ln dΓ(d)

Γ(d
2
+ 1)

,

where ψ is the digamma function. Therefore, the KL divergence between

PZ|X(·|x) and Q (in nats) is

D(PZ|X(·|x)‖Q)

= −EZ∼PZ|X(·|x)

[
ln
((

2π

(
C2

d
+
d+ 1

ε2

))−d/2

exp
(
− ‖Z‖22
2(C

2

d
+ d+1

ε2
)

))]
− h(Z|X)

=
d

2
ln
(
2π

(
C2

d
+
d+ 1

ε2

))
+

EZ∼PZ|X(·|x) [‖Z‖22]
2(C

2

d
+ d+1

ε2
)

− d ln e
√
π

ε
− ln dΓ(d)

Γ(d
2
+ 1)
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≤ d

2
ln
(
2π

(
C2

d
+
d+ 1

ε2

))
+
C2 + d(d+1)

ε2

2(C
2

d
+ d+1

ε2
)
− d ln e

√
π

ε
− ln dΓ(d)

Γ(d
2
+ 1)

=
d

2
ln
(
2

e

(
C2ε2

d
+ d+ 1

))
− ln Γ(d+ 1)

Γ(d
2
+ 1)

.

Hence, by Theorem 5.4.2, the compression size is at most ℓ+ log2(ℓ+1)+ 2 bits.

The metric privacy guarantee follows from Theorem 5.4.7.

C.10 MSE against Compression Size

We plot the MSE against the compression size (ranging from 25 to 1000 bits) for

ϵ ∈ {0.25, 0.5, 1.0, 2.0} in Figure C.1 as follows.
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Figure C.1: The MSE of PPR and CSGM against the compression size in bits,

where ε is chosen from {0.25, 0.5, 1.0, 2.0} and compression sizes vary from 25 to

1000 bits. Note that parts of the curves for PPR are flat, because a lower com-

pression size is already sufficient for PPR to exactly simulate the best Gaussian

mechanism for that value of ε, so a higher compression size than necessary will

not affect the result.
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